1 / 15

Understanding pH and Acid Neutralizing Capacity in Relation to Acid Rain

Dive into the world of pH and acid neutralizing capacity to comprehend how natural waters handle acidic conditions, including the impact of acid rain, the carbonate buffering system, and the acid-base balance. Learn about the processes influencing inorganic carbon and the importance of acid neutralizing capacity in buffering pH changes. This informative text explores the chemistry behind pH measurement, the disassociation of water, and the behavior of carbonate species in different pH environments.

beverleye
Download Presentation

Understanding pH and Acid Neutralizing Capacity in Relation to Acid Rain

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. pH, acid neutralizing capacity & acid rain Announcements Canoe trip canceled due to high water (discharge more than doubled between last Thursday and Sunday!

  2. Announcements, con't Independent projects: Meeting time Monday/Tuesday/Wednesday this week? Exams: excellent! mean: 76.8 +- 7.6 sd (out of 90 total points) Guest Lecture on Wednesday: rm 66 Mudd

  3. pH " puissance d'hydrogène" ~ Strength of hydrogen Disassociation of water: H2O <-> H+ + OH- • Dissociation constant of water Kw = [H+][OH-] = 10 -14 [H2O] [H2O]= 1= activity of water So Kw = [H+][OH-] = 10 -14 [ ]=conc. in moles/Liter pH = -log[H+] Adding acid increases Which decreases the base

  4. The pH scale pH ranges from 0 (acidic) to 14 (basic). pH is a unit-less measure on a log10 scale, so there is a tenfold difference in [H+] between increments (e.g., pH = 2 and pH = 3). At pH = 7, [H+] = [OH-]

  5. pH examples: 1. [OH-] = 10-8; what is the pH? [H+]= Kw / [OH-] = 10 -14/ 10 -8 = 10 - 6 -log[10 - 6] = 6 = pH 2. If the pH = 6.4 , what is the hydrogen ion concentration? [H+] = 10 -pH = 10 -6.4 = 3.98x10 -7

  6. The pH of natural waters • Commonly between 4 and 9 • Acid rain is a big concern • But some lakes are naturally acidic…

  7. Sphagnum bogs • Sphagnum moss exchanges H+ ions in order to uptake Ca2+ ions

  8. Volcanic action or sulfur springs • H2S (hydrogen sulfide) oxidized by bacteria to form H2SO4 (sulfuric acid)

  9. DIC - dissolved inorganic carbon The carbonate species CO2 (gas); dissolves as mixture of CO2 & H2CO3 (carbonic acid) HCO3- (bicarbonate) CO32- (carbonate) completely disassociated • Which species is present depends on pH

  10. Carbonate species disassociation constants Kh = [H2CO3]/pCO2 dictates the amount of CO2 dissolved in the water Kh= 200x that of O2 K1 = [H+][HCO3-]/[H2CO3] = 10 -6.3 (at 15oC) therefore, at pH = 6.3, [HCO3-] = [H2CO3] K2 =[H+][CO32- ]/[HCO3-] = 10 -10.3 (at 15oC) therefore, at pH = 10.3, [CO32- ] = [HCO3-]

  11. The carbonate buffering system- maintains pH CO2(gas) <> CO2 + H2O <> H2CO3 <> HCO3- + H+ <> CO32- + H+ (carbonic acid) (bicarbonate) (carbonate) How does a buffering system work?

  12. Distribution of carbonate species according to pH K2 K1 CO2(gas) <> CO2+ H2O <> H2CO3<> HCO3-+ H+ <> CO32- + H+

  13. When a system is at high pH (little to no CO2 present)… Calcium bicarbonate forms when CO2 is taken up during photosynthesis and system becomes more basic (high pH) Calcium bicarbonate is not soluble at high pH Phytoplankton and macrophyte leaves act as nuclei for precipitation CO32- + Ca2+ <> CaCO3 (solid)

  14. Processes affecting inorganic carbon • Atmospheric exchange FluxCO2 = k ([CO2 air] - [CO2water]) • k depends on wind • Groundwater inputs CaCO3 + CO2+ H2O --> Ca2+ + 2HCO3- • Lake metabolism • CaCO3 precipitation

  15. Acid neutralizing capacity (alkalinity) ANC = a measure of the lake water's capacity to buffer pH change - ANC determined by titrating a water sample with a strong acid and monitoring change in pH - added H+ is taken up first by carbonate, then by bicarbonate at approx pH=4.5, all carbonate and bicarbonate is converted to carbonic acid and the buffering capacity is exhausted - At this point, change in pH is directly proportional to the amount of acid added. - The amount of acid added up to pH= 4.5 is used to calculate ANC (in µeq/L).

More Related