1 / 26

Exercise testing

Exercise Physiology. Exercise testing. Aims of exercise testing. Gather O bjective D ata on:. Ability to do exercise using high rate of oxygen consumption (VO 2 max , VO 2peak , etc.). Aerobic ability. Aims of exercise testing. Gather Objective Data on:.

bhoy
Download Presentation

Exercise testing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Exercise Physiology Exercise testing

  2. Aims of exercise testing Gather Objective Data on: Ability to do exercise using high rate of oxygen consumption (VO2 max, VO2peak, etc.) Aerobic ability

  3. Aims of exercise testing Gather Objective Data on: Ability to exercise at an intensity that exceeds maximal (peak) oxygen consumption (30-s peak PO, supramax. tests, etc.) Anaerobic ability

  4. Aims of exercise testing Gather Objective Data on: Ability to sustain submaximal aerobic exercise for an extended time (6- and 12-min walk, 1 mile walk, etc.) Endurance

  5. Aims of exercise testing Gather Objective Data on: Ability to do unsustained work against a high resistance (MVC, peak torque, max. number repetitions, etc.) Strength

  6. Aims of exercise testing Gather Objective Data on: Ability to move joints through a prescribed range of motion (sit-and-reach distances, goniometry, etc.) Flexibility

  7. Aims of exercise testing Gather Objective Data on: Ability to do activities that require coordination and skill (gait analysis, balance, coordination, etc.) Neuromuscular skills

  8. Aims of exercise testing Gather Objective Data on: Ability to do specific physical activities of daily living (sit-and-stand scores, timed walk, etc.) Functional performance

  9. Exercise testing Measurement of body reactions (eventually adaptation) of different body systems in dependence on stress (exercise) Fitness assessment Measurement of efficiency to perform and repeat the best achievement

  10. Measured parameters Load – [W, W/kg] – age, gender, health statute, weight Energy output – [kcal] – 1 km = 70-80 kcal {run, walk} Time – [s., minute, hour] - duration Speed – [m/s-1, km/hour] Elevation – [˚, %] Distance – [m, km]

  11. Ideal exercise test 1. Easy designed • a] general – general performance • b] specific – specific performance 3. Safe 4. Valid – do we measure what we really want to? 5. Objective – no other impacts on result 6. Reliability and reproducibility

  12. Justification of exercise testing Why perform exercise testing? - INDICATION Diagnosis Intervention assessment (therapy, training) Exercise programming and training Prognostic Research

  13. Justification of exercise testing Why do not perform exercise testing? - CONTRAINDICATION ABSOULTE - Acute illness (heart stroke, fever), major hypertension (240/120), etc. RELATIVE - After heart stroke, some defects of heart valves, etc.

  14. Splitting of tests According to place a) Laboratory tests b) Field tests According to applied load: a) Maximal (incremental tests) b) Sub-maximal (usually constant workload) b) Supra-maximal (Wingate test)

  15. Laboratory × fieldtests Laboratory tests Advantages: - Accurate determination of load - Standard laboratory conditions Disadvantages: • Different movement stereotype (rower, canoeist on bicycle?) • worse achievement • Nervousness from new (unknown) conditions • -worse achievement - Transformation of results into field conditions

  16. Laboratory × fieldtests Field tests Advantages: - Knownconditions– athletic stadium, ice ring, sport hall, etc. - Identical movement stereotype - Direct use in training Disadvantages: • Relatively inaccurate determination of power - The problem of accurate measurement

  17. Maximal × submaximaltests Maximal tests Advantages: - Direct assessment of maximal capacity of organism Disadvantages: - Dependence on will and motivation of proband - Risk factor - Restriction before competition - Small changes of monitored parametersdue to training in very high trained

  18. Maximal × submaximaltests Sub-maximal tests Advantages: - Safer - Lower dependence on tested person (more comfortable) - Bigger changes of monitored parameters due to training - Restriction before competition Disadvantages: - Often based on estimation (presumption) of HRmax, etc. – worse accuracy

  19. The type and sources of stress 1. Dynamic - Individual movement (knee-bend, etc.) - Steps (Step test) - Ergometer – bicycle, treadmill, arm crank ergometer, ladder 2. Static - Dynamometer (handgrip, etc.) 3. Other - electric, pharmacological, cold, hypoxic, psychological, change of body position (laying – standing), deep breathing, cough, etc.

  20. The conditions in exercise laboratory 1. Enviroment - Calm (few persons) - Air circulation (ACE) - Temperature (18-22˚C), humidity 40-60% 2. Equipment - calibration, functionality 3. Safeness - Emergency (phone number) - Presence of physician, defibrillator, drogs

  21. The conditions in exercise laboratory 4. Tested person - Healthy - Avoid drinking coffee, alcohol and smoking (at least 12 hoursbefore) - At least 2 hours after food intake

  22. Bicycle ergometer×treadmill Bicykle ergometer - more in Europe ? - mechanical efficiency 20 – 25% • W (load) = resistance (mechanical, electromagnetical) • + revolutions/min (50 – 70) Advantages: - space, noise, accuracy of set load - easer and safer making - taking of blood sample, measurement of blood pressure. Disadvantages: - calibration, engagement of smaller muscle mass, lack of familiarity - lover oxygen consumption, lover HR , etc.

  23. Bicycle ergometer×treadmill Treadmill - more in USA, Canada ? - mechanical efficiencyno more than 15 % • W (load) = speed (km/hour) • + elevation (%, °) Advantages: - natural movement, only one possibility for children - engagement of most muscle mass - achievement of “real” maximum (higher O2consumption, HR) Disadvantages: - space demands, noise - risk of fall, problems of measurement of BP and blood sample

More Related