1 / 10

Complexidade de Algoritmos Recursivos

Complexidade de Algoritmos Recursivos. Alex F. V. Machado. Recursividade. Implementação recursiva int fatorial (int N) ‏ { if (N<= 1) ‏ return(1); else return( N * fatorial(N-1)); }. Recursividade. X= fatorial (4) ‏ return( 4* fatorial(3) ) ‏

bian
Download Presentation

Complexidade de Algoritmos Recursivos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Complexidade de Algoritmos Recursivos Alex F. V. Machado

  2. Recursividade • Implementação recursiva int fatorial (int N)‏ { if (N<= 1)‏ return(1); else return( N * fatorial(N-1)); }

  3. Recursividade • X= fatorial (4)‏ • return( 4* fatorial(3) )‏ • return( 3* fatorial(2) )‏ • return( 2* fatorial(1) )‏ • return( 1 )‏

  4. Análise de Recursividade • T(n)‏ • tempo de processar o algoritmo para entrada n • número de passos ou operações dominantes • Fatorial • T(n) = 1, se n = 0 • = T(n-1) +1, se n > 0 • mas quanto é T(n-1)?

  5. T(n) - Fatorial • = (T(n-1)) + 1 • = (T(n-2) + 1) + 1 • = T(n-2) + 2 • = (T(n-3) + 1) + 2 • = T(n-3) + 3 • ..... • forma geral, T(n) = T(n-k) + k, 1  k  n • fazendo n = k, reduzimos a T(n) = n

  6. void merge(int vec[], int vecSize) { int mid; int i, j, k; int* tmp; mid = vecSize / 2; i = 0; j = mid; k = 0; while (i < mid && j < vecSize) { if (vec[i] > vec[j]) { tmp[k] = vec[i]; ++i; } else { tmp[k] = vec[j]; ++j; } ++k; } if (i == mid) { while (j < vecSize) { tmp[k] = vec[j]; ++j; ++k; } } else { while (i < mid) { tmp[k] = vec[i]; ++i; ++k; } } for (i = 0; i < vecSize; ++i) { vec[i] = tmp[i]; } } void mergeSort(int vec[], int vecSize) { int mid; if (vecSize > 1) { mid = vecSize / 2; mergeSort(vec, mid); mergeSort(vec + mid, vecSize - mid); merge(vec, vecSize); } }

More Related