1 / 43

MOEMS with guided wave beams Paul V.Lambeck Lightwave Devices Group MESA + Institute University of Twente Enschede, Th

MOEMS with guided wave beams Paul V.Lambeck Lightwave Devices Group MESA + Institute University of Twente Enschede, The Netherlands. Outline 1.Introduction 2. MOEMS free space beams 3. MOEMS guided beams - integrated optics (IO) - IO-MEMS general - IO-MEMS MESA + devices

bin
Download Presentation

MOEMS with guided wave beams Paul V.Lambeck Lightwave Devices Group MESA + Institute University of Twente Enschede, Th

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MOEMS with guided wave beams Paul V.Lambeck Lightwave Devices Group MESA+ Institute University of Twente Enschede, The Netherlands

  2. Outline • 1.Introduction • 2. MOEMS free space beams • 3. MOEMS guided beams • - integrated optics (IO) • - IO-MEMS general • - IO-MEMS MESA+ devices • 4. Conclusions

  3. transmission translation rotation deformation (absorption) reflection (diffraction) Dependent on - MEMS-structure - light beam properties wavelength,polarization spatial: shape, angle etc

  4. MOEMS actuating MEMS OPTICS sensing // ( activating) // // Chemical domain Bio-reactor, sensor

  5. OPTICAL TELECOMMUNICATION Routing (switching) discrete Adjustment of functions continuous

  6. M.Hoffmann, P.Kopka,T.Gross,E.Voges, JMM vol 9 (1999), pp 151-155

  7. LOSS • Divergent exit beam • reflection

  8. MOEMS FREE SPACE BEAM SWITCH MATRIX in in out out

  9. add in drop out

  10. Industrial interest In MOEMS 95 00 02 year

  11. Set of discrete q values modes Slabtype-waveguide Ray picture ncore>ncladding,nsubstrate

  12. Powerprofile P(x) ~ |E(x)|2 • Speed n=c/Neff (n=c/n) • Wavelength • Number of modes Waveguides – Maxwell theory nclad ncore nbuffer • TE-TM • Propagation speed c/Neff • Power • Power profile

  13. P~E2 E Power profile Field profile Evanescent field

  14. Waveguiding channels Si3N4 200 nm SiO2 3 mm

  15. evanescent field n2 b n1 a ac n1sin a = n2 sin b sin ac = n2/n1 total reflection n1 n < n1 J.E.Fouquet, Agilent, pp 204-206

  16. add in out drop

  17. SiON Technology SiON n= 1.47-2.00 PECVD LP/PE CVD lateral structuring SiON n= 1.48-2.0 SiO2 n= 1.45 Thermal Oxidation Si wafer n= 3.5 Flexible: 1.45 = nSiO2 < nSiON < 2.01 = n Si3N4 Well developed for IO-devices for optical telecommunication K.Worhoff,L. Hilderink,A.Driessen, P.Lambeck, J Electrochem Soc 149,(2002) pp85-91

  18. -1 10 30 -2 20 10 Attenuation dB/cm -3 10 10 -4 0 10 -5 10 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 Airgap (mm) Si3N4 core, SiO2 buffer, SiO2 MP DN’

  19. ΔNeff required power ~ 10 –3 during switching ~ 10-2 continuously ~ 10-1during switching Electro-optisch Thermo-optisch Mechano-optisch (evanescent field)

  20. Pout/Pin 1 0 0 Neff Switch condition Neff > Neff,c Digital Optical Y-junction switch (DOS)

  21. Disc resonator as add/drop filter Condition for add/drop

  22. GRATING SWITCH Reflection condition: Preflected /Pin wavelength

  23. switch condition objective ~i – ~f Neff > Neff,c i - f analogue

  24. Ways of MO interaction

  25. G.J.M.Krijnen, T.S.J.Lammerink,P.V.Lambeck, M.Elwenspoek, J MM vol 9, (1999), pp 203-205

  26. G.J.Veldhuis, T.Nauta, C.Gui, J.W.Berenschot,P.V.Lambeck, J.Sel Top Quant Electr. Vol 5 (1999),pp 60-66

  27. Cross section resultaten

  28. -1 10 1000 -2 10 -3 10 -4 10 100 d=100 nm in air DN’ Attenuation dB/cm -5 10 -6 10 -7 10 10 d=100 nm in air -8 10 -9 10 d=300 nm, SiO2 buffer, extrapolated -10 10 1 0 1 2 3 4 5 6 Airgap (mm) Systems comparison

  29. Sensing Iin Iout m Reference Mach Zehnder Interferometer • perfect symmetry • Loss-less • Perfect symmetry • Loss-less dNeff = 10-8

  30. Opto-mechanical sensors (MOEMS)

  31. Fiber-chip coupler Optical Modulator Evanescent field Sensor Fiber-chip coupler 20 nm 5 µm 4 µm 350 nm 80 nm 300 nm 3 µm 1 µm 100 nm Silicon dioxide (Wet Ox.) Silicon nitride Cr/Au electode Silicon dioxide (PECVD) Zinc oxide Silicon MESA+ : M. Dijkstra, G. Altena, P. Lambeck, H. Hoekstra

  32. Conclusions 1.MEMS + free beam optics: useful functions for Optical telecommunication have been shown. 2.MEMS + Integrated Optics: - good prospects for integrated microsystems for optical telecommunication and sensing - challenge to MEMS and Integrated Optics

More Related