240 likes | 256 Views
Explore comparisons of XMM-Newton Deep Survey with ROSAT and Chandra catalogues to identify Supersoft sources in M31. Learn about the methodology, results, and classification methods of X-ray sources.
E N D
Supersoft sources in M 31: Comparing the XMM-Newton Deep Survey, ROSAT and Chandra catalogues Holger Stiele SuperSoft X-ray Sources – New Developments ESAC Madrid 20.05.2009
The Large Program Collaboration 19 scientists from 7 countries • PI: W.Pietsch (MPE) • MPE: V. Burwitz, M. Freyberg, J. Greiner, F. Haberl, H. Stiele • And: R. Barnard (The Open University), D. Hatzidimitriou (University of Crete), M. Hernanz (CSIC-IEEC), G. Israel (INAF), U. Kolb (The Open University), A. Kong (National Tsing Hua University), P. Plucinsky (Harvard-Smithsonian Centre for Astrophysics), P. Reig (IESL), G. Sala (UPC/IEEC), M. Sasaki (Harvard-Smithsonian Centre for Astrophysics), L. Shaw Greening (The Open University), L. Stella (INAF), B. Williams (Pennsylvania State University) Holger Stiele
Outline • The XMM-Newton Deep Survey catalogue • Supersoft sources optical novae • Comparing the XMM-Newton Deep Survey, ROSAT and Chandra catalogues • The catalogues • The method • The results Holger Stiele
Image • of Deep survey (“outer ring”) and archival (“major axis”) data (see Pietsch et al. 2005) • Fields with high background repeated • Optical extent indicated by D25 ellipse 0.2 – 1 keV1 – 2 keV2 – 12 keV SSSs; fgstars +SNRs;hard (AGNs,XRBs,CrablikeSNR) Extended sources mostly background galaxy clusters Holger Stiele
Hardness Ratios SSS HR2 versus HR1 separate SSS; thermal SNRs and fg stars = X-ray colour i= 1…4 B1: 0.2-0.5 keVB2: 0.5-1.0 keVB3: 1.0-2.0 keVB4: 2.0-4.5 keVB5: 4.5- 12 keV • fg star+ AGNGal/GlC XRB SSS SNR Further classification methods: • Extent • Time variability • Cross correlations with optical and radio source catalogues Holger Stiele
X-ray Sources in M 31 Field: Identification and Classification + 1951 • SSS 43 identified classified • SSS 43 • SNR 25 38 • Globular clusters 36 17 • XRB 10 22 • foreground stars 22 243 • AGN 3 49 • Galaxies 4 21 • Galaxy clusters 1 1 • Hard 1289 • Without 127 Holger Stiele
Supersoft Sources • Definition: • Radiation with effective temperature of 10 to 100 eV • Luminosities: ~1036-39 erg s-1 • HR1 < 0 and HR2 - EHR2 < -0.96 or HR2 not defined, HR3, HR4 not defined • 43 SSSs, 27 “new” Holger Stiele
Flux Distribution Blackbody “model” withTbb = 50 eVNH = 6.61020 cm-2 Unabs. fluxes Novae Period 217sTrudolyubov & Priedhorsky 2008 Number of sources M31N2001-11a M31N2005-01c erg cm-2 s-1 M31N2007-06b Period 865.5s (Nova?) Osborne et al. 2001 7.3 1036 erg/s Holger Stiele
Optical Novae 1997-10c 2005-01c 1997-10c 2007-06b 2005-01b 2005-09b • Major class of SSSs in centre of M 31: optical novae(Pietsch et al. 2005, 2007) • Outer regions: not deep enough optical and no X-ray monitoring for novae/SSSs only snapshots (X-rays) only random detections difficult to determine general properties of disk nova population SSSsNovae Holger Stiele
Optical Novae (II) 35 5.4 1038 Holger Stiele
XMM-Newton Deep Survey • 1951 sources • 43 Supersoft sources Comparing the XMM-Newton Deep Survey, ROSAT and Chandra catalogues Holger Stiele
ROSAT PSPC Survey • PSPC survey covering the entire galaxy twice 560 X-ray sources Supper et al. 1997, 2001 • Supersoft sources selected fromGreiner 2000and Kahabka 1999: • Similar selection criterion (as used for XMM-Newton) • Two hardness ratios (based on standard ROSAT energy bands) • band separation energies at ~ 0.5 keV, and ~ 1 keV • ROSAT observations taken about > 10 yr earlier than XMM-Newton observations ( investigation of long term variability) Holger Stiele
Chandra Observations Voss & Gilfanov 2007 • Observation of selected fields, especially central region Kong et al. 2002, Kaaret 2002, Di Stefano et al. 2004, Williams et al. 2004, 2006, • Very soft sources Di Stefano et al. 2004 • Three energy bands: S: 0.1-1.1 keV; M: 1.1-2 keV; H: 2-7 keV • Several criteria to select SSSs and QSSs • Important difference: • Contamination of SSS class with • Temporal distance to XMM- Only one band below ~1 keV foregroundstars, SNRs and soft AGNs Newton observations:centre and Field 2: < 1 yrFields 1+3: > ~ 4yr Image: Di Stefano et al. 2004 Holger Stiele
Method Two step process: First step: Were the XMM-Newton SSSs detected in previous surveys? Full ROSAT PSPC XMM – Newton SSS Full Chandra Second step: How many ROSAT/Chandra SSSs are detected with XMM-Newton? ROSAT SSS Full XMM Deep Survey Chandra VSS Holger Stiele
XMM-Newton SSS to ROSAT PSPC Surveys • 43 XMM-Newton SSS, 12 brighter than ROSAT detection threshold (~5.310-15 erg cm-2 s-1): • 2 also found as ROSAT SSSs • 10 not detected with ROSAT: 6 recent novae, 1 transient, 1 variable 2 must be transient/highly variable • 31XMM-Newton SSS with fluxes below ROSAT detection threshold: • 1also found as ROSAT SSSs (~factor 22-25 brighter in ROSAT observations) • 3 chance coincidences • 27 remaining sources: 7 recent novae, 1 transient (Di Stefano et al. 2004) Holger Stiele
XMM-Newton SSS to Chandra Surveys • 9 XMM-Newton SSSs have Chandra counterparts: • 6 are also classified as SSSs from Chandra • 8 of the 9 sources are located in the centre of M 31 • 34 sources do not have Chandra counterparts: • 7 are in regions not covered with Chandra • 10 are novae (4 after 2005, 6 no Chandra detections (see Pietsch et al. 2005, 2007 and M31N1999-10c, M31N2001-11a)) • 1 variable Holger Stiele
ROSAT SSSs to XMM-Newton Deep Survey • 34 ROSAT SSS, 4 not in observed XMM-Newton field • 14 correlations with XMM-Newton sources • 16 ROSAT SSS without XMM-Newton counterparts: 1 nova Where are the novae?No systematic search/monitoring campaign in the years before 1990 number of known optical novae very low (see talk of W. Pietsch) most of these sources not highly variable (fvar < 5) Holger Stiele
Chandra VSSs to XMM-Newton Deep Survey • 20 Chandra SSSs • 15 correlations with XMM-Newton sources: • 5 not detected with XMM-Newton (4 transients (Di Stefano et al. 2004, 2 of them novae),1 faint) Holger Stiele
Chandra VSSs to XMM-Newton Deep Survey • 23 Chandra QSSs • 12 correlations with XMM-Newton sources: • 11 not detected with XMM-Newton (1 outside XMM field, 5 transients (Di Stefano et al. 2004), 1 in crowded centre, 2 faint) Holger Stiele
What do we learn? • Two are located in the central field: • XMMM31 J004318.8+412017 = r3-8 = [SHL2001] 235: foreground polar? (Williams et al. 2006) • XMMM31 J004252.5+411540 = r2-12 = [SHL2001] 203 = [PFJ93] 58 = [TF91] 69: 217s period (Trudolyubov et al. 2008) • XMMM31 J003840.5+401956 = s2-26 = [SHL2001] 27: • 3 sources detected in all 3 missions visible for more than a decade: r3-8 r2-12 ROSAT • ROSAT: ~22-25 brighterXMM: June 2006 – Jan. 2008 • in 3 Chandra observations (2000-2001) only once visible variable(Di Stefano et al. 2004) s2-26 XMM-Newton Chandra Holger Stiele
What do we learn? (II) • Of 12 XMM-Newton sources with brightness above ROSAT threshold, only 2 observed by ROSAT underlines variability of the source class on long time scales (~83% variable, cf. Greiner et al. 2004) • ROSAT as well as Chandra SSSs contain sources of other classes Holger Stiele
What do we learn? (III) • Two interesting sources: • XMMM31 J004307.1+411810 = r3-115:Chandra and XMM-Newton observations between 2000-end 2001: SSSXMM-Newton observation Jan. 2002: hard spectrum (Pietsch et al. 2005) • XMMM31 J004247.9+411549 = r1-25:Chandra observations between 2000-end 2001: SSSXMM-Newton observation July 2004: hard spectrumoptical counterpart within 1.2” (‘regular or semi-regular red variable’ Fliri et al. 2006) • Nature unclear: X-ray transient (BH primary) or symbiotic r3-115 r1-25 Holger Stiele
Summary • Deep XMM-Newton survey of M 31 1951 X-ray sources, 43 Supersoft sources • Optical novae are an important class of SSSs in M 31 (5 in addition to Pietsch et al. 2005, 2007) • Correlation with ROSAT PSPC surveys and Chandra catalogues • 3 persistent SSSs • SSSs are a highly variable source class • Many ROSAT and Chandra SSSs get other classes from XMM-Newton observations • Two sources that show supersoft-hard transition between Chandra and XMM-Newton observations Holger Stiele
Thank you for your attention The large program collaboration: • PI: W.Pietsch (MPE) • MPE: V. Burwitz, M. Freyberg, J. Greiner, F. Haberl, H. Stiele • And: R. Barnard (The Open University), D. Hatzidimitriou (University of Crete), M. Hernanz (CSIC-IEEC), G. Israel (INAF), U. Kolb (The Open University), A. Kong (National Tsing Hua University), P. Plucinsky (Harvard-Smithsonian Centre for Astrophysics), P. Reig (IESL), G. Sala (UPC/IEEC), M. Sasaki (Harvard-Smithsonian Centre for Astrophysics), L. Shaw Greening (The Open University), L. Stella (INAF), B. Williams (Pennsylvania State University) Holger Stiele