1 / 16

FUNCIONES CUADRÁTICAS

FUNCIONES CUADRÁTICAS. DÍA 24 * 1º BAD CS. FUNCIONES CUADRÁTICAS. y. Todas las funciones que se pueden expresar de la forma f(x) = a.x 2 + b.x + c Reciben el nombre de FUNCIONES CUADRÁTICAS. Su gráfica es una parábola. Para dibujar una parábola necesitamos conocer:

blithe
Download Presentation

FUNCIONES CUADRÁTICAS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. FUNCIONES CUADRÁTICAS DÍA 24 * 1º BAD CS

  2. FUNCIONES CUADRÁTICAS y • Todas las funciones que se pueden expresar de la forma • f(x) = a.x2 + b.x + c • Reciben el nombre de FUNCIONES CUADRÁTICAS. Su gráfica es una parábola. • Para dibujar una parábola necesitamos conocer: • 1.- Coordenadas del vértice. • 2.- Corte con el eje de abscisas y el eje de ordenadas. • 3.- El eje de simetría. • 4.- Una tabla de valores. 5 f(x) = x2 – 2x – 3 -3 -2 -1 0 1 2 3 x -3 -5

  3. GRÁFICA DE LA PARÁBOLA • VÉRTICE DE LA PARÁBOLA • Como todo punto tendrá dos coordenadas: V(xv , yv) • Siempre se cumple: xv = - b / 2.a  yv=a.xv2+b.xv+ c • EJE DE SIMETRÍA • Es vertical y pasa por el vértice, luego su ecuación es x = xv = -b/2.a • PUNTOS DE CORTE CON LOS EJES • Si hacemos x=0  y = f (0) será el corte con el eje de ordenadas. • Si hacemos f(x)=0  La solución de la ecuación a.x 2+b.x + c = 0 nos dará los puntos de corte con el eje de abscisas, si los hay. • TABLA DE VALORES • Además de los ya calculados, vértice y cortes, hay que dar dos o cuatro más de valor de x simétrico respecto al valor del vértice. • Importante comprobación: Los cortes con el eje de abscisas, si los hay, son simétricos respecto al valor de xv. • Muy importante: Si a>0  CÓNCAVA y si a<0  CONVEXA

  4. PROPIEDADES • DOMINIO • El dominio de f(x), como cualquier función polinómica será R. • Dom f(x) = R • RECORRIDO • La imagen de una función cuadrática sólo existe del vértice a +oo o del –oo al vértice, según sea cóncava o convexa. • Img f(x) = (yv , + oo) en las funciones cuadráticas CÓNCAVAS. • Img f(x) = (- oo, yv ) en las funciones cuadráticas CONVEXAS. • SIMETRÍA • Como su gráfica es una parábola, sólo puede tener simetría PAR: • f(x) = f(-x) cuando el eje de la parábola sea el eje de ordenadas.

  5. Ejemplo 1 Ejemplo 2 • Sea f (x) = - x2 + x • a=-1<0  Convexa • Dom f(x) = R • Vértice: • xv = - b / 2.a = - 1 / 2.(-1) = 1 / 2 • yv= - (1/2)2+ 1 / 2 = - 0,25 + 0,5 = 0,25 • V(0’5 , 0´25) • Img f(x) = (- oo, 0,25] • Sea f (x) = x2 - 3 • a=1>0  Cóncava • Dom f(x) = R • Vértice: • xv = - b / 2.a = -0/2.1 = 0 • yv= 02- 3 = - 3 • V(0, - 3) • Img f(x) = [ - 3, +oo) V 0,25 -3 V

  6. LA FUNCIÓN CUADRÁTICA O FUNCIONES POLINÓMICAS DE SEGUNDO GRADO • Si tenemos una ecuación de la forma • y = a.x2 , y = a.x2 + b , y = a.x2 + b.x , y = a.x2 + b.x + c • Podemos decir que es una función cuadrática. • En ella x es la variable independiente e y es la variable dependiente. • Las letras a, b y c son los llamados parámetros. • La señalaremos así: • f(x) = a.x2 , • f(x) = a.x2 + c , • f(x) = a.x2 + b.x , • f(x) = a.x2 + b.x + c • Al ir dando valores a x , obtenemos diferentes valores de y , que llevados a un sistema de coordenadas cartesianas nos resulta siempre una curva llamada PARÁBOLA.

  7. La función f(x)= a.x2 , a > 0 y • Sea y = x2 • Tabla de valores • x y • -3 9 • -2 4 • -1 1 • 0 0 • 1 1 • 2 4 • 3 9 9 4 1 -3 -2 -1 0 1 2 3 x

  8. La función f(x)= a.x2 , a < 0 -3 -2 -1 0 1 2 3 x • Sea y = - 2.x2 • Tabla de valores • x y • -3 - 18 • -2 - 8 • -1 - 2 • 0 0 • 1 - 2 • 2 - 8 • 3 - 18 - 2 - 8 - 18 y

  9. La función f(x)= a.x2 + c , a > 0 , c > 0 y • Sea y = x2 - 2 • Tabla de valores • x y • -3 7 • -2 2 • -1 - 1 • 0 - 2 • 1 - 1 • 2 2 • 3 7 7 2 -3 -2 -1 0 1 2 3 x - 1 - 2

  10. La función f(x)= a.x2 + c , a < 0 , c > 0 5 • Sea y = - 3.x2 + 5 • Tabla de valores • x y • -3 - 22 • -2 - 7 • -1 2 • 0 5 • 1 2 • 2 - 7 • 3 - 22 2 -3 -2 -1 0 1 2 3 x - 7 - 22 y

  11. La función f(x)= a.x2 + b.x , a > 0 , b < 0 y 15 • Sea y = x2 - 2.x • Tabla de valores • x y • -3 15 • -2 8 • -1 3 • 0 0 • 1 - 1 • 2 0 • 3 3 8 3 -3 -2 -1 0 1 2 3 x - 1

  12. La función f(x)= a.x2 + b.x , a < 0 , b > 0 • Sea y = - x2 + 5.x • Tabla de valores • x y • -3 - 24 • -2 - 14 • -1 - 6 • 0 0 • 1 4 • 2 6 • 3 6 6 4 -2 -1 0 1 2 3 x - 6 - 14 y

  13. La función f(x)= a.x2 + b.x + c , a > 0 , b < 0 y c > 0 y • Sea y = x2 - 2.x + 3 • Tabla de valores • x y • -3 18 • -2 11 • -1 6 • 0 3 • 1 2 • 2 3 • 3 6 18 11 6 3 2 -3 -2 -1 0 1 2 3 x

  14. Ejemplos de dilatación f(x) = x2 y - 3 - 2 - 1 0 1 2 3 f(x) = - 0’5.x2 f(x) = - 2.x2

  15. Ejemplos de dilatación • Sea f(x) = x2 Si debemos representar: f(x) = r.x2 • El efecto es que la parábola se deforma. • Si r > 0 Conserva la concavidad Si r < 0 Se invierte. • Si |r| > 1 Se estrecha. Si |r| < 1 Se ensancha. y f(x) = 2.x2 f(x) = x2 f(x) = 0’5.x2 - 3 - 2 - 1 0 1 2 3

  16. Problema • El consumo de gasolina en un coche, para velocidades comprendidas entre 30 y 190 km/h, viene dado por la función: • Siendo x la velocidad en km/h y C(x) el consumo en litros/100 km • a) ¿A qué velocidad se debe conducir para que el consumo sea de 10 litros/100 km? • b) ¿A qué velocidad consume menos y cuál será dicho consumo?. • a) 10 = 8 – 0,045.x + 0,00025.x2 • 0,00025.x2 – 0,045.x – 2 = 0  25.x2 – 4500.x – 200000 = 0 • 5.x2 – 900.x – 40000 = 0  x2 – 180.x – 8000 = 0 • x = [180 ±√(180x180 – 4x(-8000))]/ 2 = (180+254)/2 = 217 km/h • b) El mínimo consumo estará en el vértice de la parábola: • Xv= -b / 2.a = -(-0,045)/2.0,00025 = 45 / 0,5 = 90 km /h • El consumo será: • Yv = 8 – 0,045.90 + 0,00025.902 = 8 – 4,05 + 2,025 = 5,975 litros/100 km

More Related