1 / 16

Chapter 1: Preliminary Information

Chapter 1: Preliminary Information. Section 1-1: Sets of Numbers. Objectives. Given the name of a set of numbers, provide an example. Given an example, name the sets to which the number belongs. Two main sets of numbers. Real Numbers Used for “real things” such as: Measuring Counting

brac
Download Presentation

Chapter 1: Preliminary Information

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 1:Preliminary Information Section 1-1: Sets of Numbers

  2. Objectives • Given the name of a set of numbers, provide an example. • Given an example, name the sets to which the number belongs.

  3. Two main sets of numbers • Real Numbers • Used for “real things” such as: • Measuring • Counting • Real numbers are those that can be plotted on a number line • Imaginary Numbers- square roots of negative numbers

  4. The Real Numbers • Rational Numbers-can be expressed exactly as a ratio of two integers. This includes fractions, terminating and repeating decimals. • Integers- whole numbers and their opposites • Natural Numbers- positive integers/counting numbers • Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 • Irrational Numbers-Irrational numbers are those that cannot be expressed exactly as a ratio of two numbers • Square roots, cube roots, etc. of integers • Transcendental numbers-numbers that cannot be expressed as roots of integers

  5. Chapter 1:Preliminary Information Section 1-2: The Field Axioms

  6. Objective • Given the name of an axiom that applies to addition or multiplication that shows you understand the meaning of the axiom.

  7. The Field Axioms • Closure • Commutative Property • Associative Property • Distributive Property • Identity Elements • Inverses

  8. Closure • {Real Numbers} is closed under addition and under multiplication. • That is, if x and y are real numbers then: • x + y is a unique real number • xy is a unique real number

  9. More on Closure • Closure under addition means that when two numbers are chosen from a set, the sum of those two numbers is also part of that same set of numbers. • For example, consider the digits. • The digits include 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. • If the digits are closed under addition, it means you can pick any two digits and their sum is also a digit. • Consider 8 + 9 • The sum is 17 • Since 17 is not part of the digits, the digits are not closed under addition.

  10. More on Closure • Closure under multiplication means that when two numbers are chosen from a set, the product of those two numbers is also part of that same set of numbers. • For example, consider the negative numbers. • If we choose -6 and -4 we multiply them and get 24. • Since 24 is not a negative number, the negative numbers are not closed under multiplication.

  11. The Commutative Property • Addition and Multiplication of real numbers are commutative operations. That means: • x + y = y + x • xy =yx • Are subtraction and division commutative?

  12. Associative Property • Addition and Multiplication of real numbers are associative operations. That means: • (x + y) + z = x + (y + z) • (xy)z = x(yz)

  13. Distributive Property • Multiplication distributes over addition. That is, if x, y and z are real numbers, then: x (y + z) = xy + xz • Multiplicationdoes not distribute over multiplication!

  14. Identity Elements • The real numbers contain unique identity elements. • For addition, the identity element is 0. • For multiplication, the identity element is 1.

  15. Inverses • The real numbers contain unique inverses • The additive inverse of any number x is the number – x. • The multiplicative inverse of any number x is 1/x, provided that x is not 0.

More Related