150 likes | 492 Views
Analisi Matematica A. ● Prerequisiti ● Test di ingresso, OFA, Test di Recupero ● Programma del Corso ● Lezioni ed esercitazioni ● Modalit à di svolgimento dell’esame ● Materiale didattico ● Suggerimenti per la preparazione. Mi presento.
E N D
AnalisiMatematica A ● Prerequisiti ● Test di ingresso, OFA, Test di Recupero ● Programma del Corso ● Lezioni ed esercitazioni ● Modalità di svolgimentodell’esame ● Materiale didattico ● Suggerimenti per la preparazione
Mi presento DISMI - Dipartimento di Scienze e Metodi dell'IngegneriaUniversità di Modena e Reggio Emiliatel. 0522 522616 e-mail: luisa.malaguti@unimore.it Orario di ricevimento giovedì: ore 14.00 – 16.00 oppure su appuntamento Prof.ssa Luisa MALAGUTI http://www.old-dismi.unimore.it
Prerequisiti 1. INSIEMI FUNZIONI E NUMERI. Nozione intuitiva di insieme e principali operazioni tra insiemi. Quantificatori. Definizione di funzione. Gli insiemi dei numeri naturali, interi, razionali e reali e le loro principali proprietà. Principio d'induzione. 2. ALGEBRA. Polinomi. Principio d'identità dei polinomi. Radice di un polinomio. Prodotti notevoli. Divisione tra polinomi. Equazioni e disequazioni algebriche. Sistemi di equazioni e disequazioni algebriche. 3. POTENZE, RADICI E LOGARITMI e loro principali proprietà. 4. FUNZIONI TRIGONOMETRICHE. Archi ed angoli. Seno, coseno e tangente. Funzioni trigonometriche inverse. Identità trigonometriche fondamentali. Risoluzione dei triangoli rettangoli. Formule di addizione del seno e del coseno. Semplici equazioni e disequazioni trigonometriche. 5. FUNZIONI E GRAFICI. Dominio, immagine, grafico. Funzione potenza (con esponente intero), radice, valore assoluto; funzione segno; funzioni seno, coseno e tangente; esponenziale e logaritmo. 6. GEOMETRIA ANALITICA PIANA. Equazioni di rette, parabole, circonferenze, ellissi ed iperboli e loro principali proprietà.
Test di Ingresso - 3 settembre 2013 Test superato con PTEST ≥ 24 punti
Prerequisiti 1. INSIEMI FUNZIONI E NUMERI. Nozione intuitiva di insieme e principali operazioni tra insiemi. Quantificatori. Definizione di funzione. Gli insiemi dei numeri naturali, interi, razionali e reali e le loro principali proprietà. Principio d'induzione. 2. ALGEBRA. Polinomi. Principio d'identità dei polinomi. Radice di un polinomio. Prodotti notevoli. Divisione tra polinomi. Equazioni e disequazioni algebriche. Sistemi di equazioni e disequazioni algebriche. 3. POTENZE, RADICI E LOGARITMI e loro principali proprietà. 4. FUNZIONI TRIGONOMETRICHE. Archi ed angoli. Seno, coseno e tangente. Funzioni trigonometriche inverse. Identità trigonometriche fondamentali. Risoluzione dei triangoli rettangoli. Formule di addizione del seno e del coseno. Semplici equazioni e disequazioni trigonometriche. 5. FUNZIONI E GRAFICI. Dominio, immagine, grafico. Funzione potenza (con esponente intero), radice, valore assoluto; funzione segno; funzioni seno, coseno e tangente; esponenziale e logaritmo. 6. GEOMETRIA ANALITICA PIANA. Equazioni di rette, parabole, circonferenze, ellissi ed iperboli e loro principali proprietà. Suggerimento: a tutti coloro che hanno riportato una valutrazione in P_MAT1<8 rivedere questi concetti
Test di Recupero Per tutti gli studenti iscritti al primo anno che non hanno sostenuto o non hanno superato la prova d’ingresso del 3 settembre 2013. DATA, LUOGO e DURATA: venerdì 15 novembre 2013, ore 15.00 lunedì 25 novembre 2013, ore 15.00 altre date, durante tutto l’a.a. saranno aggiunte la durata della prova è di 60 minuti. TIPO di PROVA: 20 quesiti di natura matematica a risposta multipla; una ed una sola delle risposte proposte è corretta. ARGOMENTI: gli argomenti considerati prerequisiti • Avvisiimportanti • Solo dopoaveresuperatoil Test di Ingresso o un Test di Recupero, sipossonososteneregliesami di Matematica del primo anno (AnalisiMatematica A nel primo semestre). • Chi non superail Test di Recuperoentronovembre 2014 non puòiscriversi al secondo anno, ma deveripetereil primo anno.
Corso di Azzeramento Tenuto dal prof. AndresManzini nei seguenti giorni martedì 8 ottobre – ore 14.00 -16.00 martedì 15 ottobre – ore 14.00 -16.00 martedì 22 ottobre – ore 14.00 -16.00 martedì 29 ottobre – ore 14.00 -16.00 martedì 5 novembre – ore 14.00 -16.00 martedì 11 novembre – ore 14.00 -16.00 A richiesta è possibile fissare due ulteriori date il giovedì dalle ore 14.00 alle ore 16.00. Tutti gli incontri saranno in aula 1.5 Il Corso è vivamente consigliato a tutti coloro che debbono sostenere il Test di Recupero, ma anche a chi ha superato il Test di Ingresso del 3-09, ma riportando una valutazione nella sessione P_MAT1inferiore ad 8
Lungo Percorso Analisi Matematica A + Analisi Matematica B Dai numeri reali …. …alle trasformate IDEE strumenti tecniche di calcolo Per le applicazioni tecnologiche Modelli e metodi
Programma di Analisi Matematica A NOZIONI PRELIMINARI Fattoriale. Massimo e minimo; estremo superiore ed estremo inferiore. Assioma di completezza. SUCCESIONI DI NUMERI REALI FUNZIONI DI UNA VARIABILE REALE. Limiti e continuità CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE CALCOLO INTEGRALE PER FUNZIONI DI UNA VARIABILE SERIE NUMERICHE POLINOMI E SERIE DI TAYLOR EQUAZIONI DIFFERENZIALI CALCOLO INFINITESIMALE PER LE CURVE
Testi consigliati • M. Bramanti – C.D. Pagani – S. Salsa, ANALISI MATEMATICA 1, Zanichelli, 2008. • M. Bramanti – C.D. Pagani – S. Salsa, ANALISI MATEMATICA 2, Zanichelli, 2009. • P.Marcellini - C.Sbordone, ELEMENTI di ANALISI MATEMATICA uno, versione semplificata per i nuovi corsi di laurea, Liguori E. 2002S. • N. Fusco - P. Marcellini - C. Sbordone, ELEMENTI di ANALISI MATEMATICA due, versione semplificata per i nuovi corsi di laurea, Liguori E. 2001
Orario settimanale Martedì: 10.00 – 13.00 Mercoledì: 9.00 – 11.00 Giovedì: 11.00 – 13.00 Di norma, la lezione del mercoledì sarà dedicata alla risoluzione di esercizi sulle varie parti del programma e verrà tenuta dal prof. Giorgio Goldoni
Esercitazioni Lezioni • Lucidi • Lavagna • Lavagna I lucidi sono già disponibili nella pagina internet del Corso
Modalità di svolgimento dell’esame 120 minuti non è permesso consultare libri, eserciziari, dispense o appunti 4 esercizi SCRITTO ORALE Sono ammessi a sostenere la prova orale tutti coloro che hanno riportato, nella prova scritta, una valutazione sufficiente cioè maggiore o uguale a 18/30 Tra la prova scritta e quella orale intercorrono circa 8 giorni • Illustrazione di concetti • dimostrazioni • risoluzioni di esercizi Il VOTO FINALE si ottiene dalla media pesata: di 1/3 del voto riportato allo scritto e 2/3 del voto della prova orale 6 appelli annuali: gennaio, febbraio (3) giugno, luglio e fine luglio o settembre
Suggerimenti per lo studio CFU credito formativo universitario 1 CFU= 25 ore di lavorodellostudente D.M. 509/99 9 crediti = 81 ore di lezione 81X45=3645 min. 3645 min. ~ 61 ore 225-61=164 ore 9X25= 225 numero di crediti del Corso 164: ore di studio individuale
164:12 ~ 14 Scenario 1: studente preparato già alla fine del Corso ore di lavoro individuale durante ogni settimana del Corso Scenario 2: studente preparato con UNA settimana di lavoro aggiuntivo 164-35=129:12 ~ 11 Scenario 3: studente preparato con DUE settimane di lavoro aggiuntivo 164-70=94:12 ~ 8 ore di lavoro individuali durante ogni settimana ore di lavoro individuali durante ogni settimana