1 / 192

KOMPENDIUM KAJIAN LINGKUNGAN DAN PEMBANGUNAN EKOLOGI INDUSTRI Dikoleksi : Irene M. Lestari dan Soemarno PSKP-PPSUB- Me

KOMPENDIUM KAJIAN LINGKUNGAN DAN PEMBANGUNAN EKOLOGI INDUSTRI Dikoleksi : Irene M. Lestari dan Soemarno PSKP-PPSUB- Mei 2012. EKOLOGI.

burgess
Download Presentation

KOMPENDIUM KAJIAN LINGKUNGAN DAN PEMBANGUNAN EKOLOGI INDUSTRI Dikoleksi : Irene M. Lestari dan Soemarno PSKP-PPSUB- Me

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KOMPENDIUM KAJIAN LINGKUNGAN DAN PEMBANGUNAN EKOLOGI INDUSTRI Dikoleksi: Irene M. Lestari danSoemarno PSKP-PPSUB- Mei 2012

  2. EKOLOGI Ekologiadalahilmu yang mempelajariinteraksiantaraorganismedenganlingkungannya. “Ekologi “ berasaldarikataYunanioikos (berarti "habitat") danlogos (berarti "ilmu"). Ekologimempelajariinteraksiantarmakhlukhidup , daninteraksiantaramakhlukhidupdenganlingkungannya. Dalamekologi, makhlukhidupdipelajarisebagaisatukesatuanatausistemdenganlingkunganhidupnya. Ekologimerupakancabangilmu yang masihrelatifbaru, yang barumunculpadatahun 70-an. Akantetapi, ekologimempunyaipengaruh yang besarterhadapcabangbiologinya. Ekologimempelajaribagaimanamakhlukhidupdapatmempertahankankehidupannyadenganmengadakanhubunganantarmakhlukhidupdandenganbendatakhidupdidalamtempathidupnyaataulingkungannya. Ekologi, biologidanilmukehidupanlainnyasalingmelengkapidenganzoologidanbotani yang menggambarkanhalbahwaekologimencobamemperkirakan, danekonomienergi yang menggambarkankebanyakanrantaimakananmanusiadantingkattropik. Para ahliekologimempelajarihalberikut : Perpindahanenergidanmateridarimakhlukhidup yang satukemakhlukhidup yang lain kedalamlingkungannyadanfaktor-faktor yang menyebabkannya. Perubahanpopulasiatauspesiespadawaktu yang berbedadalamfaktor-faktor yang menyebabkannya. Terjadihubunganantarspesies (interaksiantarspesies) makhlukhidupdanhubunganantaramakhlukhidupdenganlingkungannya. Padajamansekarangparaekolog (orang yang mempelajariekologi) berfokuskepadaEkowilayahbumidanrisetperubahaniklim. Sumber: http://id.wikipedia.org/wiki/Ekologi..... diunduh 4/5/2012

  3. EKOLOGI KonsepEkologi Hubunganketerkaitandanketergantunganantaraseluruhkomponenekosistemharusdipertahankandalamkondisi yang stabildanseimbang (homeostatis) . Perubahanterhadapsalahsatukomponenakanmemengaruhikomponenlainnya. Homeostatisadalahkecenderungansistembiologiuntukmenahanperubahandanselaluberadadalamkeseimbangan. Ekosistemmampumemeliharadanmengaturdirisendirisepertihalnyakomponenpenyusunnyayaituorganismedanpopulasi. Dengandemikian, ekosistemdapatdianggapsuatucibernetikdialam. Namunmanusiacenderungmengganggusistempengendalianalamiahini. ekosistemmerupakankumpulandaribermacam-macamdarialamtersebut, contohhewan, tumbuhan, lingkungan, dan yang terakhirmanusia Ekologidalamekonomi Banyakekologmenghubungkanekologidenganekonomimanusia: Lynn Margulismengatakanbahwastudiekonomibagaimanamanusiamembuatkehidupan. Studiekologibagaimanatiapbinatanglainnyamembuatkehidupan. Mike Nickerson mengatakanbahwa "ekonomitigaperlimaekologi" sejakekosistemmenciptakansumberdanmembuangsampah, yang manaekonomimenganggapdilakukan "untukbebas". Ekonomiekologidanteoriperkembanganmanusiamencobamemisahkanpertanyaanekonomidenganlainnya, namunsusah. Banyakorangberpikirekonomibarusajamenjadibagianekologi, danekonomimengabaikannyasalah. "Modal alam" ialah 1 contoh 1 teori yang menggabungkan 2 halitu. Sumber: http://id.wikipedia.org/wiki/Ekologi..... diunduh 4/5/2012

  4. EKOLOGI BeberapaCabangIlmudariEkologi Karenasifatnya yang masihsangatluas, makaekologimempunyaibeberapacabangilmu yang lebihfokus, yaitu: EkologiTingkahLaku EkologiKomunitasdanSinekologi EkologiFisiologi EkologiEkosistem EkologiEvolusi Ekologi Global EkologiManusia EkologiPopulasi EkologiAkuatik EkologiApi EkologiFungsional EkologiPolinasi EkologiHutan EkologiLaut EkologiLautTropis EkologiPangandanGizi EkologiHutan Mangrove EkologiKesehatan EkologiAntariksa EkologiPedesaan EkologiSerangga Ekologi Habitat EkologiPelestarian EkologiHewan EkologiProduksi EkologiPurbakala EkologiSosial EkologiRadiasi EkologiTumbuhanPenganggu EkologiLanskap EkologiMolekuler Ekologi Robot EkologiIndustri Prinsip-PrinsipEkologi Kajianekologimembahasekosistemdenganberbagaikomponenpenyusunnya, yaitukomponenabiotikdankomponenbiotik. Komponen (Faktor) abiotikantara lain suhu, air, kelembapan, cahaya, dantopografi; sedangkanfaktorbiotikadalahmakhlukhidup yang terdiridarimanusia, hewan, tumbuhan, danmikroba. Ekologijugaberhubunganeratdengantingkatan-tingkatanorganisasimakhlukhidup, yaitupopulasi, komunitas, danekosistem yang salingmempengaruhidanmerupakansuatusistem yang menunjukkankesatuan. Diunduhdari: http://free.vlsm.org/v12/sponsor/Sponsor-Pendamping/Praweda/Biologi/0027%20Bio%201-6b.htm Sumber: http://id.wikipedia.org/wiki/Ekologi..... diunduh 4/5/2012

  5. EKOLOGI Interaksiantarkomponenekologidapatmerupakaninteraksiantarorganisme,antarpopulasi, danantarkomunitas. A. InteraksiantarorganismeSemuamakhlukhidupselalubergantungkepadamakhlukhidup yang lain. Tiapindividuakanselaluberhubungandenganindividu lain yang sejenisatau lain jenis, baikindividudalamsatupopulasinyaatauindividu-individudaripopulasi lain. Interaksidemikianbanyakkitalihatdisekitarkita. Interaksiantarorganismedalamkomunitasada yang sangateratdanada yang kurangerat. Interaksiantarorganismedapatdikategorikansebagaiberikut. a. NetralHubungantidaksalingmenggangguantarorganismedalam habitat yang sama yang bersifattidakmenguntungkandantidakmerugikankeduabelahpihak, disebutnetral. Contohnya : antaracapungdansapi. b. PredasiPredasiadalahhubunganantaramangsadanpemangsa (predator). Hubunganinisangateratsebabtanpamangsa, predator takdapathidup. Sebaliknya, predator jugaberfungsisebagaipengontrolpopulasimangsa. Contoh : Singadenganmangsanya, yaitukijang, rusa,danburunghantudengantikus. c. ParasitismeParasitismeadalahhubunganantarorganisme yang berbedaspesies, bilasalahsatuorganismehiduppadaorganisme lain danmengambilmakanandarihospes/inangnyasehinggabersifatmerugikaninangnya. Contoh : Plasmodium denganmanusia, Taeniasaginatadengansapi, danbenaludenganpohoninang. d. KomensalismeKomensalismemerupakanhubunganantaraduaorganisme yang berbedaspesiesdalambentukkehidupanbersamauntukberbagisumbermakanan; salahsatuspesiesdiuntungkandanspesieslainnyatidakdirugikan. Contohnyaanggrekdenganpohon yang ditumpanginya. e. MutualismeMutualismeadalahhubunganantaraduaorganisme yang berbedaspesies yang salingmenguntungkankeduabelahpihak. Contoh, bakteriRhizobiumyang hiduppadabintilakarkacang-kacangan. Sumber: . http://free.vlsm.org/v12/sponsor/Sponsor-Pendamping/Praweda/Biologi/0028%20Bio%201-6c.htm.... diunduh 4/5/2012

  6. EKOLOGI InteraksiAntarpopulasi Antarapopulasi yang satudenganpopulasi lain selaluterjadiinteraksisecaralangsungatautidaklangsungdalamkomunitasnya.Contohinteraksiantarpopulasiadalahsebagaiberikut. Alelopatimerupakaninteraksiantarpopulasi, bilapopulasi yang satumenghasilkanzat yang dapatmenghalangitumbuhnyapopulasi lain. Contohnya, disekitarpohon walnut (juglans) jarangditumbuhitumbuhan lain karenatumbuhaninimenghasilkanzat yang bersifattoksik. Padamikroorganismeistilahalelopatidikenalsebagaianabiosa. Contoh, jamurPenicillium sp. dapatmenghasilkanantibiotika yang dapatmenghambatpertumbuhanbakteritertentu. Kompetisimerupakaninteraksiantarpopulasi, bilaantarpopulasiterdapatkepentingan yang samasehinggaterjadipersainganuntukmendapatkanapa yang diperlukan. Contoh, persainganantarapopulasikambingdenganpopulasisapidipadangrumput. Sumber: http://free.vlsm.org/v12/sponsor/Sponsor-Pendamping/Praweda/Biologi/0028%20Bio%201-6c.htm..... diunduh 4/5/2012

  7. EKOLOGI InteraksiAntarKomunitas Komunitasadalahkumpulanpopulasi yang berbedadisuatudaerah yang samadansalingberinteraksi. Contohkomunitas, misalnyakomunitassawahdansungai. Komunitassawahdisusunolehbermacam-macamorganisme, misalnyapadi, belalang, burung, ular, dangulma. Komunitassungaiterdiridariikan, ganggang, zooplankton, fitoplankton, dandekomposer. Antarakomunitassungaidansawahterjadiinteraksidalambentukperedarannutriendari air sungaikesawahdanperedaranorganismehidupdarikeduakomunitastersebut. Interaksiantarkomunitascukupkomplekkarenatidakhanyamelibatkanorganisme, tapijugaaliranenergidanmakanan. Interaksiantarkomunitasdapatkitaamati, misalnyapadadaurkarbon. Daurkarbonmelibatkanekosistem yang berbedamisalnyalautdandarat. InteraksiAntarkomponenBiotikdenganAbiotik Interaksiantarakomponenbiotikdenganabiotikmembentukekosistem. Hubunganantaraorganismedenganlingkungannyamenyebabkanterjadinyaaliranenergidalamsistemitu. Selainaliranenergi, didalamekosistemterdapatjugastrukturatautingkattrofik, keanekaragamanbiotik, sertasiklusmateri. Denganadanyainteraksi-interaksitersebut, suatuekosistemdapatmempertahankankeseimbangannya. Pengaturanuntukmenjaminterjadinyakeseimbanganinimerupakancirikhassuatuekosistem. Apabilakeseimbanganinitidakdiperolehmakaakanmendorongterjadinyadinamikaperubahanekosistemuntukmencapaikeseimbanganbaru. Sumber: . http://free.vlsm.org/v12/sponsor/Sponsor-Pendamping/Praweda/Biologi/0028%20Bio%201-6c.htm.... diunduh 4/5/2012

  8. EKOLOGI AliranEnergi Energidapatdiartikansebagaikemampuanuntukmelakukankerja. Energidiperolehorganismeedarimakanan yang dikonsumsinyadandipergunakanuntukaktivitashidupnya. Cahayamataharimerupakansumberenergiutamakehidupan. Tumbuhanberklorofilmemanfaatkancahayamatahariuntukberfotosintesis. Organisme yang menggunakanenergicahayauntukmerubahzatanorganikmenjadizatorganikdisebutkemoautotrofOrganisme yang menggunakanenergi yang didapatdarireaksikimiauntukmembuatmakanandisebutkemoautotrof Energi yang tersimpandalammakananinilah yang digunakanolehkonsumenuntukaktivitashidupnya. Pembebasanenergi yang tersimpandalammakanandilakukandengancaraoksidasi (respirasi). Golonganorganismeautotrofmerupakanmakananpentingbagiorganismeheterotrof, yaituorganisme yang tidakdapatmembuatmakanansendirimisalnyamanusia, hewan, danbakteritertentu. Makananorganismeheterotrofberupabahanorganik yang sudahjadi. Aliranenergimerupakanrangkaianurutanpemindahanbentukenergisatukebentukenergi yang lain dimulaidarisinarmataharilalukeprodusen, konsumen primer, konsumentingkattinggi, sampaikesaprobadidalamtanah. Siklusiniberlangsungdalamekosistem. Sumber: http://free.vlsm.org/v12/sponsor/Sponsor-Pendamping/Praweda/Biologi/0031%20Bio%201-7b.htm diunduh 4/5/2012

  9. EKOLOGI: SiklusKarbondanOksigen Di atmosferterdapatkandungan COZ sebanyak 0.03%. Sumber-sumber COZ diudaraberasaldarirespirasimanusiadanhewan, erupsivulkanik, pembakaranbatubara, danasappabrik. Karbondioksidadiudaradimanfaatkanolehtumbuhanuntukberfotosintesisdanmenghasilkanoksigen yang nantinyaakandigunakanolehmanusiadanhewanuntukberespirasi. Hewandantumbuhan yang mati, dalamwaktu yang lama akanmembentukbatubaradidalamtanah. Batubara akandimanfaatkanlagisebagaibahanbakar yang jugamenambahkadar C02 diudara. Di ekosistem air, pertukaran C02 denganatmosferberjalansecaratidaklangsung. Karbondioksidaberikatandengan air membentukasamkarbonat yang akanteruraimenjadi ion bikarbonat. Bikarbonatadalahsumberkarbonbagi alga yang memproduksimakananuntukdirimerekasendiridanorganismeheterotrof lain. Sebaliknya, saatorganisme air berespirasi, COz yang merekakeluarkanmenjadibikarbonat. Jumlahbikarbonatdalam air adalahseimbangdenganjumlah C02 di air. Siklus Karbon dan Oksigen di Alam Sumber: http://free.vlsm.org/v12/sponsor/Sponsor-Pendamping/Praweda/Biologi/0032%20Bio%201-7c.htm diunduh 4/5/2012

  10. EKOLOGI: KeseimbanganLingkungan Definisilingkunganhidupadalahkesatuanruangdengansemuabenda, dayakeadaan, danmakhlukhidup, termasukdidalamnyamanusiadanperilakunya. Komponenlingkunganterdiridarifaktorabiotik (tanah, air, udara, cuaca, suhu) danfaktorbiotik (tumbuhandanhewan, termasukmanusia). Lingkunganhidup balk faktorbiotikmaupunabiotikberpengaruhdandipengaruhimanusia. Segala yang adapadalingkungandapatdimanfaatkanolehmanusiauntukmencukupikebutuhanhidupmanusia, karenalingkunganmemilikidayadukung. Dayadukunglingkungannyaadalahkemampuanlingkunganuntukmendukungperikehidupanmanusiadanmakhlukhiduplainnya. Dalamkondisialami, lingkungandengansegalakeragamaninteraksi yang adamampuuntukmenyeimbangkankeadaannya. Namuntidaktertutupkemungkinan, kondisidemikiandapatberubaholehcampurtanganmanusiadengansegalaaktivitaspemenuhankebutuhan yang terkadangmelampaui Batas. Keseimbanganlingkungansecaraalamidapatberlangsungkarenabeberapahal, yaitukomponen-komponen yang adaterlibatdalamaksi-reaksidanberperansesuaikondisikeseimbangan, pemindahanenergi (arusenergi), dansiklusbiogeokimiadapatberlangsung. Keseimbanganlingkungandapatterganggubilaterjadiperubahanberupapenguranganfungsidarikomponenatauhilangnyasebagiankomponen yang dapatmenyebabkanputusnyamatarantaidalamekosistem. Salahsatufaktorpenyebabgangguanadalahpolusidisampingfaktor-faktor yang lain. Sumber: http://free.vlsm.org/v12/sponsor/Sponsor-Pendamping/Praweda/Biologi/0036%20Bio%201-8a.htm diunduh 4/5/2012

  11. EKOLOGI: PENCEMARAN LINGKUNGAN Polusiataupencemaranlingkunganadalahmasuknyaataudimasukkannyamakhlukhidup, zatenergi, danataukomponen lain kedalamlingkungan, atauberubahnyatatananlingkunganolehkegiatanmanusiaatauolehprosesalamsehinggakualitaslingkunganturunsampaiketingkattertentu yang menyebabkanlingkunganmenjadikurangatautidakdapatberfungsilagisesuaidenganperuntukannya (Undang-undangPokokPengelolaanLingkunganHidup No. 4 Tahun 1982). Zatataubahan yang dapatmengakibatkanpencemarandisebutpolutan. Syarat-syaratsuatuzatdisebutpolutanbilakeberadaannyadapatmenyebabkankerugianterhadapmakhlukhidup. Contohnya, karbondioksidadengankadar 0,033% diudaraberfaedahbagitumbuhan, tetapibilalebihtinggidari 0,033% dapatrnemberikanefekmerusak. Suatuzatdapatdisebutpolutanapabila: 1. jumlahnyamelebihijumlahnormal 2. beradapadawaktu yang tidaktepat 3. beradapadatempat yang tidaktepat . Sifatpolutanadalah:1. merusakuntuksementara, tetapibilatelahbereaksidenganzatlingkungantidakmerusaklagi2. merusakdalamjangkawaktu lama. ContohnyaPbtidakmerusakbilakonsentrasinyarendah. Akantetapidalamjangkawaktu yang lama, Pbdapatterakumulasidalamtubuhsampaitingkat yang merusak. Macam-macampencemarandapatdibedakanberdasarkanpadatempatterjadinya, macambahanpencemarnya, dantingkatpencemaran. Menuruttempatterjadinya, pencemarandapatdigolongkanmenjaditiga, yaitupencemaranudara, air, dantanah. Sumber: http://free.vlsm.org/v12/sponsor/Sponsor-Pendamping/Praweda/Biologi/0037%20Bio%201-8b.htm diunduh 4/5/2012

  12. EKOLOGI: Pencemaranudara Sumberpolusiudara lain dapatberasaldariradiasibahanradioaktif, misalnya, nuklir. Setelahpeledakannuklir, materiradioaktifmasukkedalamatmosferdanjatuhdibumi. materiradioaktifiniakanterakumulusiditanah, air, hewan, tumbuhan, danjugapadamanusia. Efekpencemarannuklirterhadapmakhlukhidup, dalamtaraftertentu, dapatmenyebabkanmutasi, berbagaipenyakitakibatkelainan gen, danbahkankematian. Pencemaranudaradinyatakandenganppm (part per million) yang artinyajumlah cm3 polutan per m3 udara. Pencemarudaradapatberupa gas danpartikel. Contohnyasebagaiberikut. Gas H2S. Gas inibersifatracun, terdapatdikawasangunungberapi, bisajugadihasilkandaripembakaranminyakbumidanbatubara. Gas CO dan CO2. Karbonmonoksida (CO) tidakberwarnadantidakberbau, bersifatracun, merupakan hash pembakaran yang tidaksempurnadaribahanbuanganmobildanmesin letup. Gas CO2 dalamudaramurniberjumlah 0,03%. Bilamelebihitoleransidapatmengganggupernapasan. Selainitu, gas C02 yang terlaluberlebihandibumidapatmengikatpanasmataharisehinggasuhubumipanas. Pemanasan global dibumiakibat C02 disebutjugasebagaiefekrumahkaca. Partikel SO2 dan NO2. Keduapartikelinibersamadenganpartikelcairmembentukembun, membentukawandekattanah yang dapatmengganggupernapasan. Partikelpadat, misalnyabakteri, jamur, virus, bulu, dantepung sari jugadapatmengganggukesehatan. Batubarayang mengandung sulfur melaluipembakaranakanmeng-hasilkan sulfur dioksida. Sulfur dioksidabersamadenganudarasertaoksigendansinarmataharidapatmenghasilkanasam sulfur. Asaminimembentukkabutdansuatusaatakanjatuhsebagaihujan yang disebuthujanasam. Hujanasamdapatmenyebabkangangguanpadamanusia, hewan, maupuntumbuhan. Misalnyagangguanpernapasan, perubahanmorfologipadadaun, batang, danbenih. Sumber: http://free.vlsm.org/v12/sponsor/Sponsor-Pendamping/Praweda/Biologi/0037%20Bio%201-8b.htm diunduh 4/5/2012

  13. EKOLOGI: pengelolaanlingkungan Sehubungandenganpemanfaatansumberdayaalam, agar lingkungantetaplestari, harusdiperhatikantatanan/tatacaralingkunganitusendiri. Dalamhalinimanusialah yang paling tepatsebagaipengelolanyakarenamanusiamemilikibeberapakelebihandibandingkandenganorganisme lain. Manusiamampumerombak, memperbaiki, danmengkondisikanlingkunganseperti yang dikehendakinya, seperti: manusiamampuberpikirsertameramalkankeadaan yang akandatang manusiamemilikiilmudanteknologi manusiamemilikiakaldanbudisehinggadapatmemilihhal-hal yangbaik. Pengelolaanlingkunganhidupadalahupayaterpadudalampemanfaatan, penataan, pemeliharaan, pengawasan, pengendalian, pemulihan, danpengembanganlingkunganhidup. Pengelolaaninimempunyaitujuan : Mencapaikelestarianhubunganmanusiadenganlingkunganhidupsebagaitujuanmembangunmanusiaseutuhnya. Mengendalikanpemanfaatansumberdayasecarabijaksana. Mewujudkanmanusiasebagaipembinalingkunganhidup. Melaksanakanpembangunanberwawasanlingkunganuntukkepentingangenerasisekarangdanmendatang. Melindunginegaraterhadapdampakkegiatandiluarwilayahnegara yang menyebabkankerusakandanpencemaranlingkungan. Melaluipenerapanpengelolaanlingkunganhidupakanterwujudkedinamisandanharmonisasiantaramanusiadenganlingkungannya. Untukmencegahdanmenghindaritindakanmanusia yang bersifatkontradiksidarihal-haltersebutdiatas, pemerintahtelahmenetapkankebijakanmelaluiUndang-undangLingkunganHidup. Sumber: http://free.vlsm.org/v12/sponsor/Sponsor-Pendamping/Praweda/Biologi/0039%20Bio%201-8d.htm diunduh 4/5/2012

  14. EKOLOGI INDUSTRI Industrial Ecology (IE) is the study of material and energy flows through industrial systems. The global industrial economy can be modeled as a network of industrial processes that extract resources from the Earth and transform those resources into commodities which can be bought and sold to meet the needs of humanity. Industrial ecology seeks to quantify the material flows and document the industrial processes that make modern society function. Industrial ecologists are often concerned with the impacts that industrial activities have on the environment, with use of the planet's supply of natural resources, and with problems of waste disposal. Industrial ecology is a young but growing multidisciplinary field of research which combines aspects of engineering, economics, sociology, toxicology and the natural sciences. Industrial Ecology has been defined as a "systems-based, multidisciplinary discourse that seeks to understand emergent behaviour of complex integrated human/natural systems". The field approaches issues of sustainability by examining problems from multiple perspectives, usually involving aspects of sociology, the environment, economy and technology. The name comes from the idea that we should use the analogy of natural systems as an aid in understanding how to design sustainable industrial systems Sumber: http://en.wikipedia.org/wiki/Industrial_ecology..... diunduh 27/4/2012

  15. EKOLOGI INDUSTRI Industrial ecology is concerned with the shifting of industrial process from linear (open loop) systems, in which resource and capital investments move through the system to become waste, to a closed loop system where wastes can become inputs for new processes. Much of the research focuses on the following areas: material and energy flow studies ("industrial metabolism") dematerialization and decarbonization technological change and the environment life-cycle planning, design and assessment design for the environment ("eco-design") extended producer responsibility ("product stewardship") eco-industrial parks ("industrial symbiosis") product-oriented environmental policy eco-efficiency Industrial ecology seeks to understand the way in which industrial systems (for example a factory, an ecoregion, or national or global economy) interact with the biosphere. Natural ecosystems provide a metaphor for understanding how different parts of industrial systems interact with one another, in an "ecosystem" based on resources and infrastructural capital rather than on natural capital. It seeks to exploit the idea that natural systems do not have waste in them to inspire sustainable design. Along with more general energy conservation and material conservation goals, and redefining commodity markets and product stewardship relations strictly as a service economy, industrial ecology is one of the four objectives of Natural Capitalism. This strategy discourages forms of amoral purchasing arising from ignorance of what goes on at a distance and implies a political economy that values natural capital highly and relies on more instructional capital to design and maintain each unique industrial ecology. Sumber: http://en.wikipedia.org/wiki/Industrial_ecology..... diunduh 27/4/2012

  16. PRINSIP EKOLOGI INDUSTRI (IE) One of the central principles of Industrial Ecology is the view that societal and technological systems are bounded within the biosphere, and do not exist outside of it. Ecology is used as a metaphor due to the observation that natural systems reuse materials and have a largely closed loop cycling of nutrients. Industrial Ecology approaches problems with the hypothesis that by using similar principles as natural systems, industrial systems can be improved to reduce their impact on the natural environment as well. The table shows the general metaphor. The Kalundborg industrial park is located in Denmark. This industrial park is special because companies reuse each others' waste (which then becomes by-products). For example, the Energy E2 Asnæs Power Station produces gypsum as a by product of the electricity generation process; this gypsum becomes a resource for the BPB Gyproc A/S which produces plasterboards. This is one example of a system inspired by the biosphere-technosphere metaphor: in ecosystems, the waste from one organism is used as inputs to other organisms; in industrial systems, waste from a company is used as a resource by others. Apart from the direct benefit of incorporating waste into the loop, the use of an eco-industrial park can be a means of making renewable energy generating plants, like Solar PV, more economical and environmentally friendly. In essence, this assists the growth of the renewable energy industry and the environmental benefits that come with replacing fossil-fuels. Sumber: http://en.wikipedia.org/wiki/Industrial_ecology..... diunduh 27/4/2012

  17. PRINSIP EKOLOGI INDUSTRI IE examines societal issues and their relationship with both technical systems and the environment. Through this holistic view , IE recognizes that solving problems must involve understanding the connections that exist between these systems, various aspects cannot be viewed in isolation. Often changes in one part of the overall system can propagate and cause changes in another part. Thus, you can only understand a problem if you look at its parts in relation to the whole. Based on this framework, IE looks at environmental issues with a systems thinking approach. SebagaicontohadalahSuatu Kota. A city can be divided into commercial areas, residential areas, offices, services, infrastructures, etc. These are all sub-systems of the 'big city’ system. Problems can emerge in one sub-system, but the solution has to be global. Let’s say the price of housing is rising dramatically because there is too high a demand for housing. One solution would be to build new houses, but this will lead to more people living in the city, leading to the need of more infrastructure like roads, schools, more supermarkets, etc. This system is a simplified interpretation of reality whose behaviors can be ‘predicted’. In many cases, the systems IE deals with are complex systems. Complexity makes it difficult to understand the behavior of the system and may lead to rebound effects. Due to unforeseen behavioral change of users or consumers, a measure taken to improve environmental performance does not lead to any improvement or may even worsen the situation. For instance, in big cities, traffic can become problematic. Let's imagine the government wants to reduce air pollution and makes a policy stating that only cars with an even license plate number can drive on Tuesdays and Thursdays. Odd license plate numbers can drive on Wednesdays and Fridays. Finally, the other days, both cars are allowed on the roads. The first effect could be that people buy a second car, with a specific demand for license plate numbers, so they can drive every day. The rebound effect is that, the days when all cars are allowed to drive, some inhabitants now use both cars (whereas they only had one car to use before the policy). The policy did obviously not lead to environmental improvement but even made air pollution worse. Sumber: http://en.wikipedia.org/wiki/Industrial_ecology..... diunduh 27/4/2012

  18. PRINSIP EKOLOGI INDUSTRI Moreover, life cycle thinking is also a very important principle in industrial ecology. It implies that all environmental impacts caused by a product, system, or project during its life cycle are taken into account. In this context life cycle includes: Raw material extraction Material processing Manufacture Material Use Maintenance Disposal of wastes. The transport necessary between these stages is also taken into account as well as, if relevant, extra stages such as reuse, remanufacture, and recycle. Adopting a life cycle approach is essential to avoid shifting environmental impacts from one life cycle stage to another. This is commonly referred to as problem shifting. For instance, during the re-design of a product, one can choose to reduce its weight, thereby decreasing use of resources. However, it is possible that the lighter materials used in the new product will be more difficult to dispose of. The environmental impacts of the product gained during the extraction phase are shifted to the disposal phase. Overall environmental improvements are thus null. A final and important principle of IE is its integrated approach or multidisciplinarity. IE takes into account three different disciplines: social sciences (including economics), technical sciences and environmental sciences. The challenge is to merge them into a single approach. Sumber: http://en.wikipedia.org/wiki/Industrial_ecology..... diunduh 27/4/2012

  19. PRINSIP EKOLOGI INDUSTRI A final and important principle of IE is its integrated approach or multidisciplinarity. IE takes into account three different disciplines: social sciences (including economics), technical sciences and environmental sciences. The challenge is to merge them into a single approach. METODE ANALISIS DALAM EKOLOGI INDUSTRI Analisis manfaat dan biaya digunakan untuk mengevaluasi penggunaan sumberdaya ekonomi agar sumberdaya yang langkadapatdigunakansecaraefisien. Analisismanfaatdanbiayadigunakanuntukevaluasi program atauproyekuntukkepentinganpublik, seperti : manajemensumberdayaalamdan pengembangansumberenergi. Biasanyaanalisis B/C initerintegrasi denganAnalisisMengenaiDampakLingkungan (AMDAL) yang dilakukanuntukmengevaluasidampaksuatuproyekatau program terhadaplingkunganhidup. Sehinggaanalisisinitidakhanyamelihatmanfaatdanbiayaindividu, tetapisecaramenyeluruhmemperhitungkanmanfaatdanbiayasosialdanselanjutnyadapatdisebutsebagaianalisismanfaatdanbiayasosial. Sumber: http://en.wikipedia.org/wiki/Industrial_ecology..... diunduh 27/4/2012

  20. EKOLOGI INDUSTRI KONSEP UMUM EKOLOGI INDUSTRI Industrialisasi • Padadasarnyaekologiindustrimerupakansuatupendekatanmanajemenlingkungandimanasuatusistemtidakdilihatsecaraterpisahdengansistemsekelilingnyatetapimerupakanbagianutuh yang salingmendukungdalamrangkamengoptimalkansiklus material ketikasuatubahanbakudiprosesmenjadiproduk Efisiensi Simbiosis Industri • Konsepekologiindustriditerapkanuntukmengembangkanterciptanyasumberenergibaru yang berasaldarilimbah proses industrisebelumnya. Dengan menerapkan konsep ekologi industri beberapa industri dapatmelakukansistempertukaranlimbah yang dapatdigunakanolehperusahaanlainnyadalamsuatukawasan. Limbahdarisuatukegiatanindustribisajadimerupakanlimbah yang dapatdimanfaatkanuntuksumberenergibagiindustri yang lain. Tujuanutamaekologiindustridalamruanglingkupindustri bioethanol adalahmemajukandanmelaksanakankonseppembangunanberkelanjutanbaiksecararegional maupunlokal Berkelanjutan Lingkungan Sumber: ………….. diunduh6/5/2012

  21. EKOLOGI INDUSTRI SISTEM INDUSTRI Sumber: ………….. diunduh6/5/2012

  22. EKOLOGI INDUSTRI Sistemindustriterdapattiga (3) tipe, yaitu : TipeI adalahsistem proses linier. Padatipeinienergidan material masuk pada sistemkemudianmenghasilkanproduk, produksamping, danlimbah. Limbahyang dihasilkantidakdilakukanproses olahulangsehinggamembutuhkanpasokanbahanbakudanenergiyang banyak. TipeII adalahtipeindustri yang paling banyakdigunakan di Indonesia, tipeinisebagianlimbahtelahdiolahulangdalamsistemdansebagianlagidibuangkelingkungan. TipeIII merupakansistemproduksikesetimbangandinamik yang energidanlimbahnyadiolahulangsecarabaikdandigunakansebagaibahanbakuolehkomponensistem lain. Pada sistem ini merupakan sistem industri yang tertutup total dan hanya energi matahariyang datangdariluarsistem. Hal inimerupakansistem ideal yang menjaditujuanekologiindustri. EkologiIndustriSebagaiWujudSistemIndustriMenuju Pembangunan Berkelanjutan Ekologiindustrimerupakan multi disiplinilmu yang membahasmasalahsistemindustri, aktivitasekonomidanhubungannya yang fundamental dengansistemalam. Secaraidealnyasistem yang dibangundalamekologiindustrimengikutisiklusdimanaaliranenergi, material, danpenggunaansampahhasilolahannyadapatdibentukdalamsuatusiklustertutup, sehinggadapatmengefisiensikanpenggunaansumberdayaalam,bahkanbisamelengkapi/memperkayasumberdayaalamitusendiri. Konsepekologiindustrimunculuntukmengubahparadigmabahwaindustriitumerupakansistem yang linear, yaitudimanahasillimbahdarisisaproduksiindustridibuangkelingkungandandapatmerusaklingkungan, yang seharusnyasuatuindustriitubersifatsiklustertutup yang artinyaenergidansampahsisatelahdidaurulangdandigunakanlagiolehorganisasi lain dandiprosesdalamsuatusistem. Sumber: http://malikalkarim.wordpress.com/2011/12/05/ekologi-industri-sebagai-wujud-sistem-industri-menuju-pembangunan-berkelanjutan/ ………….. diunduh6/5/2012

  23. EKOLOGI INDUSTRI SIMBIOSIS INDUSTRI Simbiosisindustrimerupakansuatubentuk kerja sama diantara industri-industri yang berbeda. Bentukkerjasamainidapatmeningkatkankeuntunganmasing-masingindustri dan pada akhirnya berdampak positif pada lingkungan. Dalam proses simbiosis ini limbahsuatuindustridiolahmenjadibahanbakuindustrilain. Proses simbiosisini akan sangatefektifjikakomponen-komponenindustri tersebut tertata dalam suatu kawasan industriterpadu (eco-industrial parks). Ekologiindustrisebenarnyamenawarkansolusiuntukmenciptakanpembangunanindustri yang berkelanjutandanberwawasanlingkungan. Dalam konsep ekologi industri kawasanindustriditatasedemikianrupasehinggaindustri-industrimempunyaihubungansimbiosismutualisme. Industri - industridi dalam kawasan saling terhubung untukmeningkatkanproduktivitasdanefisiensiprosesproduksinya. Sumber: ………….. diunduh6/5/2012

  24. EKOLOGI INDUSTRI ProspekPenerapan EkologiIndustri Di Indonesia Persoalan utama negara berkembang seperti Indonesia adalah sumberdayaalam yang melimpahnamunmasihbelumdioptimalkanpenggunaannya. Kawasanindustrimasihberupasuatukawasan yang belumterpadusecarasistematisdanhanyaberupakumpulanindustri yang berdirisendiri. Konsepekologiindustri di Indonesia masihdapatterusdikembangkansehinggapadaakhirnyadiperolehsuatupembangunanindustriyang berkelanjutandanberwawasanlingkungan. Indonesia adalahnegaraagrarissehinggapenataankawasanekologiindustridapatdimulaidaripendiriankawasanindustriterpadu di dekatkawasanpertanianmasyarakatataulebihdikenaldengankawasanagroindustri. Sumber: http://malikalkarim.wordpress.com/2011/12/05/ekologi-industri-sebagai-wujud-sistem-industri-menuju-pembangunan-berkelanjutan/ ………….. diunduh6/5/2012

  25. EKOLOGI INDUSTRI Industri yang dapat diintegrasikan di Indonesia, antara lain perkebunantebu, industrigula, industribioetanol, industri pulp dan kertas, industri pupuk, industri semen, serta industri logam alkali. Sitemtransportasidalamindustrigulatebu http://reunismansa.files.wordpress.com/2010/04/sepur_01_sondokoro.jpg Sumber: ………….. diunduh6/5/2012

  26. EKOLOGI INDUSTRI • PenerapanEkologiIndustripadaIndustriBioetanol Adanyaindustriguladapatmemacubertambahnyalimbahindustri yang menimbulkanpermasalahanlingkungan. Dimana, ketikajumlahindustrisemakinbanyak, dayadukungalamsemakinterbatas, dansumberdayaalamsemakinmenipis. Olehkarenaitu, perluadanyasistembaru yang dapatmeningkatkanproduksuatuindustri, penghematanbahanbakusekaligusmeminimalkanpencemaran lingkungan, sistem tersebut adalah ekologi industri. Padaekologiindustrimempertimbangkanmasalahpolusidanlingkungansertamempertimbangkankesinambunganindustrisertaaspekekonomitetapdiutamakan. Denganekologiindustriakanterciptasuatusistem yang terpadudiantaraindustri-industri yang adadidalamnyadansalingbersimbiosissecaramutualisme. • Production of bioethanol from sugarbeet Sumber: http://www.biofuels-platform.ch/en/infos/bioethanol.php………….. diunduh6/5/2012

  27. EKOLOGI INDUSTRI BIO-ETANOL Industrietanol/bioetanolmempunyaiprospek yang sangatbagusdi Indonesia, karenakebutuhanetanol di Indonesia terusmengalamipeningkatan. Dalamperkembangannyaindustrietanoldiarahkanuntukdiversifikasipenggunaanprodukuntukbahanbakar biofuel, yang merupakansalahsatubahanbakar yang dapatdiperbaharui, karenabahanbakunyadapatdiperbaharui, misal : tetestebu/molase, singkong, sorgum. Tujuanutamaekologiindustridalamruanglingkupindustribioetanoltidaklain adalahuntukmemajukandanmelaksanakankonseppembangunanberkelanjutanbaikitusecararegional maupunlokal, denganmencobamenemukankebutuhangenerasisekarangdengangenerasi yang akandatang. • Dampakpositif : • Meningkatkanperekonomiandaerahmelaluipembukaanlapangankerjabaru, • Secarasosialdenganadanyapabrikbioetanolberbahandasarlimbahindustripangan yang merupakankomoditasterbesar di Indonesia makamatapencahariaanmasyarakatlebihvariatifsehinggaakanmemajukandaerahsetempat • Dari aspeklingkunganpemanfaatanlimbahindustripanganuntukproduksi bioethanol akansangatmenguntungkankarenadapatmeminimalkanlimbah organic yang terbuangkelingkungan. Sumber: ………….. diunduh6/5/2012

  28. EKOLOGI INDUSTRI • Skema ekologi industri bioetanol Bioetanoldiperolehmelaluiprosesfermentasimenggunakanyeast (khamir), denganbantuan urea danasamsulfatlposfat. Limbahcairpengolahan bioetanol (vinase) dapatdiolahuntukmenghasilkan biogas untukpemanas boiler danpupuk K+ yang kayaKaliumdanunsurmikro yang sangatbermanfaatbagi tanaman (khususuntukpabrikdenganbahanbakutetestebu), sedangkan limbah gas C02 diprosesmenjadi liquid/solid C02 untukindustriminuman berkarbonasi. industrietanoidapatmenjadiindustriterpadutanpapolusi. Diunduhdari: http://repository.ipb.ac.id/bitstream/handle/123456789/25678/prosiding_workshop_biodiesel_dan_bioethanol-8.pdf Sumber: ………….. diunduh6/5/2012

  29. EKOLOGI INDUSTRI: BIO-ETHANOL Optimasi penggunaan material dan energi dalam kegiatan industri dimulaidenganmenganalisaprosesindustrigulauntukmenghilangkanlimbah yang terbuang. Padaindustrigulamasing-masingproses unit pengolahandibuatseefektifmungkin. Kemudiandibuatsimbiosisantaraindustriguladenganindustri yang lain sehinggabisameminimalkanpenggunaanenergidanproduksamping. Bagiindustri yang lainnya, keuntungan yang bisadiambildenganadanyaindustrigulaadalahbisamemperolehbahanbakuindustri yang mempunyaihargasangat minimal untukmemperolehprodukdenganhargajualtinggisehinggabisamenguntungkandarisegiekonomi. Hargabahanbakutersebutmurahdikarenakanmenggunakanlimbahdariindustrigula. Bioetanolyang dihasilkandapatdigunakansebagaibahanbakaralternatifsehinggadapatmengurangipenggunaanbensin. Sehinggasecaratidaklangsungdapatmengurangi ketergantungan pada bahan bakar fosil. Sumber: ………….. diunduh6/5/2012

  30. EKOLOGI INDUSTRI Model EkosistemIndustridi Denmark Sumber: http://onlinebuku.com/2008/07/12/ekologi-industri-paradigma-baru-industri-ramah-lingkungan/ ………….. diunduh6/5/2012

  31. PERKEMBANGAN MASA DEPAN The ecosystem metaphor popularized by Frosch and Gallopoulos has been a valuable creative tool for helping researchers look for novel solutions to difficult problems. Recently, it has been pointed out that this metaphor is based largely on a model of classical ecology, and that advancements in understanding ecology based on complexity science have been made by researchers such as C. S. Holling, James J. Kay, and others. For industrial ecology, this may mean a shift from a more mechanistic view of systems, to one where sustainability is viewed as an emergent property of a complex system. To explore this further, several researchers are working with agent based modeling techniques. Exergy analysis is performed in the field of industrial ecology to use energy more efficiently. The term exergy was coined by Zoran Rant in 1956, but the concept was developed by J. Willard Gibbs. In recent decades, utilization of exergy has spread outside of physics and engineering to the fields of industrial ecology, ecological economics, systems ecology, and energetics. Recently, there has been work advocating for large scale photovoltaic production facilities in an industrial ecology setting. Sumber: http://en.wikipedia.org/wiki/Industrial_ecology..... diunduh 27/4/2012

  32. METABOLISME INDUSTRI Industrial metabolism was first proposed by Robert Ayres as "the whole integrated collection of physical processes that convert raw materials and energy, plus labour, into finished products and wastes...” The goal is to study the flow of materials through society in order to better understand the sources and causes of emissions, along with the effects of the linkages in our socio-technological systems. Ayres, R.U., 1994. Industrial metabolism: Theory and policy. In: Ayres, R.U., Simonis, U.K. (Eds.), Industrial Metabolism: Restructuring for Sustainable Development. United Nations University Press, Tokyo, pp. 3–20. S. Anderberg (1998), "Industrial metabolism and linkages between economics, ethics, and the environment", Ecological Economics, 24, pp 311-320 Sumber: http://en.wikipedia.org/wiki/Industrial_metabolism diunduh 27/4/2012

  33. AKUNTING ENERGI Energy accounting is a system used to measure, analyze and report the energy consumption of different activities on a regular basis. It is done to improve energy efficiency. MANAJEMEN ENERGI Energy accounting is a system used in energy management systems where measuring and analyzing energy consumption is done to improve energy efficiency within an organization. Various energy transformations are possible. An energy balance can be used to track energy through a system. This becomes a useful tool for determining resource use and environmental impacts. How much energy is needed at each point in a system and in what form that energy is, can be measured. An accounting system keeps track of energy in, energy out, and non-useful energy versus work done, and transformations within a system. Sometimes, non-useful work is what is often responsible for environmental problems. Sumber: http://en.wikipedia.org/wiki/Energy_accounting diunduh 27/4/2012

  34. TRANSFORMASI / KONSERVASI ENERGI Energy transformation or energy conversion is the process of changing one form of energy to another. In physics, the term energy describes the capacity to produce certain changes within a system, without regard to limitations in transformation imposed by entropy. Changes in total energy of systems can only be accomplished by adding or subtracting energy from them, as energy is a quantity which is conserved, according to the first law of thermodynamics. According to special relativity, changes in the energy of systems will also coincide with changes in the system's mass, and the total amount of mass of a system is a measure of its energy. Energy in a system may be transformed so that it resides in a different state, or different type of energy. Energy in many states may be used to do many varieties of physical work. Energy may be used in natural processes or machines, or else to provide some service to society (such as heat, light, or motion). For example, an internal combustion engine converts the potential chemical energy in gasoline and oxygen into heat, which is then transformed into the propulsive energy (kinetic energy that moves a vehicle). A solar cell converts solar radiation into electrical energy that can then be used to light a bulb or power a computer. The generic name for a device which converts energy from one form to another, is a transducer. In general, most types of energy, save for thermal energy, may be converted efficiently to any other kind of energy. Sometimes this occurs with an efficiency of essentially 100%, such as when potential energy is converted to kinetic energy as an object falls in vacuum, or when it orbits nearer or farther from another object, in space. Konversienergimenjadipanasdapatterjadidenganefisiensi yang sangattinggi. Sumber: http://en.wikipedia.org/wiki/Energy_transformation diunduh 27/4/2012

  35. TRANSFORMASI / KONSERVASI ENERGI Exceptions for perfect conversion efficiency (even for isolated systems) occur when energy has already been partly distributed among many available quantum states for a collection of particles, which are freely allowed to explore any state of momentum and position (phase space). In such circumstances, a measure called entropy, or evening-out of energy distribution in such states, dictates that future states of the system must be of at least equal evenness in energy distribution. (There is no way, taking the universe as a whole, to collect energy into fewer states, once it has spread to them). A consequence of this requirement is that there are limitations to the efficiency with which thermal energy can be converted to other kinds of energy, since thermal energy in equilibrium at a given temperature already represents the maximal evening-out of energy between all possible states. Such energy is sometimes considered "degraded energy," because it is not entirely usable. The second law of thermodynamics is a way of stating that, for this reason, thermal energy in a system may be converted to other kinds of energy with efficiencies approaching 100%, only if the entropy (even-ness or disorder) of the universe is increased by other means, to compensate for the decrease in entropy associated with the disappearance of the thermal energy and its entropy content. Otherwise, only a part of thermal energy may be converted to other kinds of energy (and thus, useful work), since the remainder of the heat must be reserved to be transferred to a thermal reservoir at a lower temperature, in such a way that the increase in entropy for this process more than compensates for the entropy decrease associated with transformation of the rest of the heat into other types of energy. Sumber: http://en.wikipedia.org/wiki/Energy_transformation diunduh 27/4/2012

  36. ENERGY TRANSFORMATION IN ENERGY SYSTEMS LANGUAGE Sumber: http://en.wikipedia.org/wiki/Industrial_ecology..... diunduh 27/4/2012

  37. KONSERVASI ENERGI DALAM MESIN For instance, a coal-fired power plant makes lots of energy and involves these energy transformations: Chemical energy in the coal converted to thermal energy Thermal energy converted to kinetic energy in steam Kinetic energy converted to mechanical energy in the turbine Mechanical energy of the turbine converted to electrical energy, which is the ultimate output In such a system, the last step is almost perfectly efficient, the first and second steps are fairly efficient, but the third step is relatively inefficient. The most efficient gas-fired electrical power stations can achieve 50% conversion efficiency. Oil- and coal-fired stations achieve less. In a conventional automobile, these energy transformations are involved: Potential energy in the fuel converted to kinetic energy of expanding gas via combustion Kinetic energy of expanding gas converted to linear piston movement Linear piston movement converted to rotary crankshaft movement Rotary crankshaft movement passed into transmission assembly Rotary movement passed out of transmission assembly Rotary movement passed through differential Rotary movement passed out of differential to drive wheels Rotary movement of drive wheels converted to linear motion of the vehicle. Sumber: http://en.wikipedia.org/wiki/Industrial_ecology..... diunduh 27/4/2012

  38. KONSERVASI ENERGI There are many different machines and transducers that convert one energy form into another. A short list of examples follows: Thermoelectric (Heat → Electric energy) Geothermal power (Heat→ Electric energy) Heat engines, such as the internal combustion engine used in cars, or the steam engine (Heat → Mechanical energy) Ocean thermal power (Heat → Electric energy) Hydroelectric dams (Gravitational potential energy → Electric energy) Electric generator (Kinetic energy or Mechanical work → Electric energy) Fuel cells (Chemical energy → Electric energy) Battery (electricity) (Chemical energy → Electric energy) Fire (Chemical energy → Heat and Light) Electric lamp (Electric energy → Heat and Light) Microphone (Sound → Electric energy) Wave power (Mechanical energy → Electric energy) Windmills (Wind energy → Electric energy or Mechanical energy) Piezoelectrics (Strain → Electric energy) Acoustoelectrics (Sound → Electric energy) Friction (Kinetic energy → Heat) Heater (Electric energy → Heat) PengertianKonservasiEnergi Kegiatanpemanfaatanenergisecaraefisiendanrasionaltanpamengurangipenggunaanenergi yang memangbenar-benardiperlukansertatidakmengurangikenyamanan. Padamasalaluhargaenergirelatifmurah (bersubsidi) Efisiensienergibukanmerupakanpertimbanganutamadalamdesainperalatan,sehingaseringkalididapatperalatan yang oversized / belumefisiensementaraituinvestasiselaludititkberatkanpadapenambahankapasitasproduksi (meskibelumefisien) danbiayainvestasiawalperalatan yang baikumumyalebihmahal. Terbatasnyapengetahuanteknikmengenaikonservasienergijugamenjadikansalahsatualasanpemakaianenergibelumefisien. Diunduhdari: http://www.scribd.com/doc/51013907/Pengertian-konservasi-energi Sumber: http://en.wikipedia.org/wiki/Industrial_ecology..... diunduh 27/4/2012

  39. ANALISIS ALIRAN MATERIAL (BAHAN) . Material flow analysis (MFA) (also referred to as substance flow analysis; SFA) is an analytical method of quantifying flows and stocks of materials or substances in a well-defined system. MFA is an important tool to assess the physical consequences of human activities and needs in the field of Industrial Ecology, where it is used on different spatial and temporal scales. Examples are accounting of material flows within certain industries and connected ecosystems, determination of indicators of material use by different societies, and development of strategies for improving the material flow systems in form of material flow management. The most prolific writer on the topic is Paul H. Brunner. MotivaSI MFA Human needs such as shelter, food, transport, or communication require materials such as wood, starch, sugar, iron and steel, copper, or semiconductors. As society develops and economic activity grows, production, use, and disposal of the materials employed increases to a scale where unwanted impacts on environment and society cannot be neglected anymore, neither locally nor globally: Material flows represent the core of local environmental problems such as leaching from landfills or oil spills. Rising concern about global climate change put a previously unimportant waste flow, carbon dioxide, on the top of the political and scientific agenda. In addition the gradual shift from traditional to urban mining in developed countries requires a detailed assessment of in-use and obsolete stocks of materials within the human environment. Industries, government bodies, and other organisations therefore need a tool to complement economic accounting with systematic book-keeping of materials entering, staying, and leaving the anthroposphere. Material flow analysis is such a tool. Sumber: http://en.wikipedia.org/wiki/Material_flow_analysis diunduh 27/4/2012

  40. PRINSIP-PRINSIP ANALISIS ALIRAN BAHAN PrinsipDasar MFA is based on two fundamental and well-established scientific principles, system approach and mass balance. While these principles are applied wide across science and technology, it is the way they are applied to the socioeconomic metabolism that makes MFA a special method. DefinisiSIstem: An MFA system is a model of a process, industry sector or region of concern. Its level of detail is chosen according to the purpose of the study. An MFA system consists of the system boundary, processes, flows, and stocks. Contrary to e.g. chemical engineering where such a system would represent a specific physical setup, systems and processes in MFA can represent much larger and more abstract things as long as they are well-defined. The concept of the system is central as it allows to allocate quantitative information either as stocks within certain processes or as flows between processes. In other words an MFA system allows to graphically allocate the meaning of measurements or statistical data in form of stocks or flows that are related to certain processes in a given system. MFA studies can be refined by disaggregating or simplified by aggregating processes. Next to the system and the arrangement of processes and flows in between, scale and scope of the system need to be specified. The spatial scale is the geographic entity that is covered by the system. A system representing a certain industrial sector can be applied to the US, China, certain world regions, or the world as a whole. The temporal scale is the point in time or time span for which the system shall be considered. A system can represent a snapshot of stocks and flows at a certain point in time or it can contain time series which describe the temporal evolution of the system variables. The material (scope) of the system is the actual physical entity that shall be quantified. This can be a certain chemical element such as cadmium or a substance such as CO2. More general things can be quantified as well as long as some kind of balance can be established. Examples are goods such as passenger cars or other physical quantities such as energy. Sumber: http://en.wikipedia.org/wiki/Material_flow_analysis diunduh 27/4/2012

  41. Sistem MFA yang umum, tanpakuantifikasi. Sistem MFA yang elementer, tanpakuantifikasi. Sumber: diunduh 27/4/2012

  42. ANALISIS ALIRAN BARANG DAN BAHAN MFA = MATERIAL FLOW ANALYSIS Unlike in daily life, MFA requires a more precise use of the terms material, substance, or good due to the way they are affected by the mass balance principle. A chemical element is “a pure chemical substance consisting of one type of atom distinguished by its atomic number”. A substance is “any (chemical) element or compound composed of uniform units. All substances are characterized by a unique and identical constitution and are thus homogeneous.” A good is defined as “economic entity of matter with a positive or negative economic value. Goods are made up of one or several substances”. The term material in MFA “serves as an umbrella term for both substances and goods.” KomponendalamSistemAliranBahan: 1.Subjek (bahan, orang, dokumen, peralatan)2.Sumber Pergerakan: a.FasilitasPengolahan b.FasilitasTransportasi c.Gudang d.DepartemenProduction and Quality Control 3.Komunikasi (yang mengkoordinir ³sumber pergerakan´); a.JadwalProduksi b.DiagramProses c.BorangPerintahProduksi/Pengiriman. d.WorkOrder Release PolaAliranBahan: AlirandidalamStasionKerja AlirandidalamDepartemen (antarStasionKerja). AliranantarDepartemen. BentukPolaAliranBahan:  ±Lokasipenerimaandanpengiriman ±Jumlahtahapan / panjangproses.  ±Prasaranatransportasidiluarpabrik ±Jumlah / tingkatlantaiproduksi.  ±JumlahKomponenBahan / Produk ±UkurandanKonfigurasiBangunan yang ada. Sumber: http://www.scribd.com/doc/34446986/Metode-Perancangan-Dan-Aliran-Bhn-2 diunduh 27/4/2012

  43. NERACA PROSES : PROCESS BALANCE One of the main purposes of MFA is to obtain a complete picture of the metabolism of certain elements or substances within the scope of the system. Such an analysis must also cover the stocks and flows that are not covered by financial accounting such as some waste flows, exhausts, or stocks of obsolete products. Mass balance or more general process balance is a first order physical principle that turns MFA into a powerful tool. The requirement for a balance to hold for each process facilitates a complete picture of the materials used, produced, and discarded within the various processes. Which balances hold for a given system depends on the specific processes that are considered: While for a process ‘oil refinery’ one can establish a mass balance for each chemical element, this is not possible for a nuclear power station. A car factory respects the balance for steel, but a steel mill doesn’t. Mass balance is a powerful and surprisingly versatile concept for the quantification of MFA systems. When quantifying MFA systems either by measurements or from statistical data, mass balance and other process balances have to be checked to ensure the correctness of the quantification and to reveal possible data inconsistencies or even misconceptions in the system such as the omission of a flow or a process. A typical MFA system with quantification. Sumber: diunduh 27/4/2012

  44. APLIKASI PADA SEKALA RUANG DAN WAKTU YANG BERBEDA Material flow analyses are conducted on various spatial and temporal scales, for a variety of elements, substances, and goods, and cover a wide range of process chains and material cycles. Examples are MFA on a national or regional scale (also referred to as Material Flow Accounting): In this type of studies the material exchanges between an economy and the natural environment are analyzed. Several indicators are calculated in order to assess the level of resource intensity of the system. Corporate material flow analysis, or MFA along an industrial supply chain involving a number of companies: The goal of material flow analysis within a company is to optimize the production processes in such a way that materials and energy are used in the most efficient manner (e.g. by recycling and reduction of waste). Companies that implement material flow analysis can use the results to improve their operations costs and environmental performance. Dalamsiklus-hidupsuatuproduk: The life cycle inventory as part of life cycle assessment can be considered an MFA as it involves system definition and balances. Sumber: diunduh 27/4/2012

  45. METODE-METODE EKOLOGI INDUSTRI MFA is complementary to Life Cycle Assessment and Input-output models. Some overlaps between the different methods exist as they all share the system approach and to some extent the mass balance principle. The methods mainly differ in purpose, scope, and data requirements. MFA studies often cover the entire cycle (mining, production, manufacturing, use, waste handling) of a certain substance within a given geographical boundary and time frame. The level of detail of the system is adapted to the substance considered. Material stocks are considered explicitly which makes MFA suitable to tackle resource scarcity and recycling from old scrap. The common use of time series and lifetime models makes MFA a suitable forecasting tool for long-term trends in material use. Compared to IO analyses the number of processes considered in MFA systems is usually much lower. On the other hand mass balance ensures that flows of by-products or waste are not overlooked in MFA studies, whereas in IO tables these flows are often not listed due to their lack in economic value. In addition, physical IO models are much less common than economic ones. Material stocks are also only indirectly covered by IO analysis in form of capital accumulation. Moreover, IO models do not have an upper limit: Any given final demand can be satisfied. MFA systems on the other hand usually contain stocks of ressources and hence a physical upper boundary of material turnover can be established. Life cycle assessments and inventories focus on the various material demands and subsequent impacts for single products, whereas MFA studies typically focus on a single material in many different products. When scaling up LCA studies to cover a whole market or sector, feedbacks on the industry, such as flows of old scrap or resource constraints should be considered, topics that are traditionally covered by MFA studies. Sumber: diunduh 27/4/2012

  46. AKUNTING ALIRAN BAHAN Material flow accounting (MFA) is the study of material flows on a national or regional scale. It is therefore sometimes also referred to as regional, national or economy-wide material flow analysis. DEFINISI The goal of material flow accounting is to ensure national planning, especially for scarce resources, and to allow forecasting. It also allows to assess environmental burdens through economic activities of a nation or to determine how material intensive an economy is. The principle concept underlying MFA is a simple model of this interrelation between the economy and the environment, in which the economy is an embedded subsystem of the environment. Similar to living beings, this subsystem is dependent on a constant throughput of materials and energy. Raw materials, water and air are extracted from the natural system as inputs, transformed into products and finally re-transferred to the natural system as outputs (waste and emissions). In order to highlight the similarity to natural metabolic processes, the terms “industrial” or “societal” metabolism have been introduced. In MFA studies for a region or on a national level the flows of materials between the natural environment and the economy are analyzed and quantified on a physical level. The focus may be on individual substances (e.g. Cadmium flows), specific materials, or bulk material flows (e.g. steel and steel scrap flows within an economy). Research on MFA is strong in Germany, Austria and the United States. Researchers in this field are organized in the ConAccount network. Sumber: http://en.wikipedia.org/wiki/Material_flow_accounting diunduh 27/4/2012

  47. AKUNTING ALIRAN BAHAN Statistics related to material flow accounting are usually compiled by national statistical offices, using economic, agricultural and trade statistics measuring the exchange of material between different products available in an economy. • TEKNIK ANALISA ALIRAN BAHAN • AnalisaDiskriptif–Konvensional • 1. Menggunakanalat bantu Bagan / Peta-petaKerja: •  BaganProsesatauBaganProsesOperasi •  Diagram AliratauBaganAlirProses • 2. Analisadilakukandenganmengajukanpertanyaankritis: • Apa • Megapa • Bagaimanaataudimanaseharusnya, untukmemperolehkriteriaaliranbahan yang baik: • Tidakadahambatanataukondisi ‘leherbotol´  • Tidaksimpangsiurdan ‘back-tracking´  • Aliranataujarakpergerakandanpenanganan yang minimum  • Sesuaidengankondisieksternallingkunganpabrik. • AnalisaKuantitatif: • 1. BaganPerjalanan • 2. KeseimbangamLini • 3. TeknikAntrian Sumber: http://www.scribd.com/doc/34446986/Metode-Perancangan-Dan-Aliran-Bhn-2 diunduh 5/5/2012

  48. AKUNTING ALIRAN BAHAN Statistics related to material flow accounting are usually compiled by national statistical offices, using economic, agricultural and trade statistics measuring the exchange of material between different products available in an economy. Indikator Statistics related to material flows are usually combined in different indicators. Some of these indicators are listed below. More information on how the statistics are collected, under what legal framework and how they are defined is available on Economy-wide material flow accounts The following indicators are commonly used in material flow accounting to measure the resource efficiency of a country or region: Total Material Requirement (TMR) includes the domestic extraction of reources (minerals, fossil fuels, biomass), the indirect flows caused by and associated with the domestic extraction (called "Hidden Flows") and the imports. Domestic Material Input (DMI) summarizes the domestic extraction of reources and the imports, but excludes the indirect flows associated with the domestic extraction, since they are sometimes difficult to quantify. Direct Material Consumption (DMC): this indicator accounts all materials that are consumed within or remain in the domestic environment. The quantity is the domestic material input minus the exports out of the economy. Domestic Processed Output (DPO) is defined by the OECD as "the total mass of materials which have been used in the national economy, before flowing into the environment. These flows occur at the processing, manufacturing, use, and final disposal stages of the economic production-consumption chain.“ Total Domestic Output (TDO) includes the domestic processed output (DPO) plus the hidden flows associated with the domestic production. Net Addition to Stocks (NAS), the materials that are neither released to the domestic environment nor exported, but contribute to a physical increase of the economic processing system itself, e.g. infrastructure, buildings, machinery or other durable goods. Hidden Flows are materials that are extracted or moved, but do not enter the economy. According to OECD, the "displacement of environmental assets without absorption into the economic sphere", such as overburden from mining operations. Sumber: diunduh 27/4/2012

  49. LIFE-CYCLE ANALYSIS A life-cycle assessment (LCA, also known as life-cycle analysis, ecobalance, and cradle-to-grave analysis) is a technique to assess environmental impacts associated with all the stages of a product's life from-cradle-to-grave (i.e., from raw material extraction through materials processing, manufacture, distribution, use, repair and maintenance, and disposal or recycling). LCA’s can help avoid a narrow outlook on environmental concerns by: Compiling an inventory of relevant energy and material inputs and environmental releases; Evaluating the potential impacts associated with identified inputs and releases; Interpreting the results to help you make a more informed decision. TujuandanSasaran The goal of LCA is to compare the full range of environmental effects assignable to products and services in order to improve processes, support policy and provide a sound basis for informed decisions. The term life cycle refers to the notion that a fair, holistic assessment requires the assessment of raw-material production, manufacture, distribution, use and disposal including all intervening transportation steps necessary or caused by the product's existence. There are two main types of LCA. Attributional LCAs seek to establish the burdens associated with the production and use of a product, or with a specific service or process, at a point in time (typically the recent past). Consequential LCAs seek to identify the environmental consequences of a decision or a proposed change in a system under study (oriented to the future), which means that market and economic implications of a decision may have to be taken into account. Social LCA is under development as a different approach to life cycle thinking intended to assess social implications or potential impacts. Social LCA should be considered as an approach that is complementary to environmental LCA. The procedures of life cycle assessment (LCA) are part of the ISO 14000 environmental management standards: in ISO 14040:2006 and 14044:2006. (ISO 14044 replaced earlier versions of ISO 14041 to ISO 14043.) Sumber: http://en.wikipedia.org/wiki/Life_Cycle_Assessment diunduh 27/4/2012

  50. LIFE CYCLE INVENTORY Life Cycle Inventory (LCI) analysis involves creating an inventory of flows from and to nature for a product system. Inventory flows include inputs of water, energy, and raw materials, and releases to air, land, and water. To develop the inventory, a flow model of the technical system is constructed using data on inputs and outputs. The flow model is typically illustrated with a flow chart that includes the activities that are going to be assessed in the relevant supply chain and gives a clear picture of the technical system boundaries. The input and output data needed for the construction of the model are collected for all activities within the system boundary, including from the supply chain (referred to as inputs from the technosphere). The data must be related to the functional unit defined in the goal and scope definition. Data can be presented in tables and some interpretations can be made already at this stage. The results of the inventory is an LCI which provides information about all inputs and outputs in the form of elementary flow to and from the environment from all the unit processes involved in the study. Inventory flows can number in the hundreds depending on the system boundary. For product LCAs at either the generic (i.e., representative industry averages) or brand-specific level, that data is typically collected through survey questionnaires. At an industry level, care has to be taken to ensure that questionnaires are completed by a representative sample of producers, leaning toward neither the best nor the worst, and fully representing any regional differences due to energy use, material sourcing or other factors. The questionnaires cover the full range of inputs and outputs, typically aiming to account for 99% of the mass of a product, 99% of the energy used in its production and any environmentally sensitive flows, even if they fall within the 1% level of inputs. One area where data access is likely to be difficult is flows from the technosphere. Those completing a questionnaire will be able to specify how much of a given input they use from supply chain sources, but they will not usually have access to data concerning inputs and outputs for those production processes. The entity undertaking the LCA must then turn to secondary sources if it does not already have that data from its own previous studies. National databases or data sets that come with LCA-practitioner tools, or that can be readily accessed, are the usual sources for that information. Care must then be taken to ensure that the secondary data source properly reflects regional or national conditions. Sumber: diunduh 27/4/2012

More Related