840 likes | 1k Views
FFZS-10 Úvod do moderní fyziky I Co předcházelo kvantové fyzice. http ://webak.upce.cz/~stein/lectcz/ffzs_10.html. Doc. Milo š Steinhart, 06 036, ext. 6029. * Písemná práce.
E N D
FFZS-10 Úvod do moderní fyziky ICo předcházelo kvantové fyzice http://webak.upce.cz/~stein/lectcz/ffzs_10.html Doc. Miloš Steinhart, 06 036, ext. 6029
*Písemná práce • Nádobu (Papinův hrnec) o objemu 0.05 m3 uzavřeme za běžných podmínek 105 Pa a 30° C pevným víkem s manometrem a ohřejeme na 90° C. • Vysvětlete, jaké veličiny se musely změnit uvnitř nádoby a jak? • Jaký tlak naměříme? • Měděným drátem o průřezu 3 mm2 teče proud 20 A. MCu= 63.5 g/mol a Cu=8.95g/cm3. Předpokládáme, že volnými nosiči jsou elektrony a každý atom přispívá jedním. • Co dělá vodič vodičem a proč přispívá každý atom Cu právě jedním elektronem? • Jakou mají volné nosiče náboje hustotu a driftovou rychlost? • Máme k dispozici několik spojných čoček dvojího typu o f1 = 5 cm a f2 = 2 m. • Sestavte z libovolného množství čoček co nejjednodušší dalekohled, popište ho a nakreslete. • Jaké bude mít zvětšení a bude obraz přímý nebo převrácený? • Máme deskový kondenzátor C = 1 pF nabitý na 100 V. Po odpojení zdroje k němu připojíme kvalitní voltmetr. Potom mezi desky vložíme dielektrickou destičku o relativní permitivitě r = 100. • Co očekáváme, že ukáže voltmetr a proč? • Jak se změní energie kondenzátoru? • Bude nutné vkládat destičku do kondenzátoru silou nebo tam bude vtažena? Odůvodněte!
Hlavní body • Částicové vlastnosti vln • Záření černého tělesa – Planckův zákon • Fotoelektrický jev • Comptonův jev • Vlnové vlastnosti částic • DeBrogliovy vlny • Elektronová difrakce • Představy o stavbě atomu • Rentgenovo záření • Laser
Záření černého tělesa I • Ze zkušenosti víme, že jsme schopni cítit sálání blízkého teplého tělesa. Kromě kondukce a konvekce se totiž tepelná energie přenáší i EMA zářením - radiací. • Při teplotách do cca 700° C je záření hlavně v infračervené oblasti. Při teplotách vyšších se objevujevýrazněji i jeho viditelná složka. • Musíme si uvědomit význam přenosu energie radiací: Existence života na Zemi je téměř zcela založená na získávání radiační energie od Slunce.
Záření černého tělesa II • Při studiu tepelného záření je nutné jej oddělit od záření odraženého. Používáme idealizaci a mluvíme o dokonale černém tělese, jehož veškerévyzařování je tepelné. • Kromě schopnosti vyzařovat má každé těleso schopnost též záření absorbovat. • Gustav Robert Kirchhoff ukázal, že tyto schopnosti jsou úměrné a když těleso dobřeabsorbuje, musí též dobřeemitovat.
Záření černého tělesa III • V roce 1879 objevil Josef Stefan zákon, který by později (1884) teoreticky odůvodněn Ludwigem Boltzmanem : Z plochy S z materiálu s emitivitou o teplotě T odchází radiací tepelný výkon konstanta = 5.67033 10-8 Wm-2K-4 • Je tedy zřejmé, že odvod tepla můžeme ovlivnit emitivitou povrchu. Pro studium vlastností zářiče je ale vhodné, aby záření bylo blízké záření černého tělesa. • Koncem 19. století byl objeven systém zářící, jako d.č.ť.
Záření černého tělesa IV Záření dopadající z vnějšku je dokonale pohlceno. (Podobně jako u oka) Spektrum vycházejícího záření závisí pouze na teplotě tělesa.
Záření černého tělesa V • Nepřekonatelnou obtíž však s sebou přinášely pokusy o popis spektrálního chování teplotní závislosti intenzity záření černého tělesa. • Dílčího úspěchu dosáhl v roce 1896 W. Wien, který formuloval empirický zákon, podle něhož se chovají maxima spektrálního rozdělení : m je vlnová délka odpovídající maximu rozdělení
*Záření černého tělesa VI • Na přelomu 19. a 20. století ještě vznikla teorie Rayleigh-Jeansova, která popisovala dobře dlouhovlnnou oblast spektra. Neexistovala ale teorie, která by dokázala popsat celé chování. • Průlomem byl až (zpočátku empirický) vztah Maxe Plancka (1885-1947) (nyní Planckův zákon): k = 1.38 10-23 J/Kje Boltzmanova konstanta a h = 6.626 10-34 J s = 4.1356692 10-5 eV s je Planckova konstanta
Záření černého tělesa VII • Planckův zákon byl průlomem nejen proto, že vysvětloval záření černého tělesa, ale předpokládal systém skládající se z malých oscilátorků, jejichž energie nemohou dosáhnout libovolné hodnoty, ale jsou diskrétní : • M. Planck považoval diskrétnost energií za pomůcku, díky níž bylo možné interpretovat data. Revolučnost myšlenky, že energie v mikrosvětě je kvantovaná veličina, rozeznal až Albert Einstein v roce 1905.Stanovil, že částice EMA záření – foton, má energii závisející na frekvenci právě podle Planckova zákona .
Záření černého tělesa VIII • Záření černého tělesa a jeho rozuzlení Planckův zákon jedním z jevů, které si vyžádaly vznik nového popisu mikrosvěta – kvantovéteorie. • Kromě toho lze použít k velmi praktickým účelům, jako je bezkontaktní měření teploty od vysokých teplot v tavných pecích poteploty hvězd nebo reliktní záření v kosmu…
Záření černého tělesa IX Pyrometr s mizejícím vláknem – měření teploty oko
Fotoelektrický jev I • Jak název napovídá, spočívá fotoelektrický jev ve vyráženíelektronů z pevných látek následkemozářeníelektromagnetickýmzářením(VIS, UV). • Umístíme-li do blízkosti ozářené elektrody elektrodu další, vytvoří se mezi nimi (téměř okamžitě)rovnovážné napětí U, které odpovídá maximálníkinetickéenergii, jakou mají elektrony vyražené za příslušných podmínek :
Fotoelektrický jev II • Ukazuje se, že Ekmaxnezávisí na intenzitě ale je lineární funkcí jeho frekvence. Jev ale existuje až za jistou prahovoufrekvencí. Ta odpovídáminimálnívýstupnípráci Wo, která je potřebná pro uvonění elektronů z látky a je materiálovýmparametrem : • To opět podporuje představu kvant záření.
*Fotoelektrický jev III • Vlnové představě odporuje i kvantitativní rozbor rychlosti děje: Kdyby byl výkon záření rozdělen rovnoměrně v průřezu paprsku, trvalo by naakumulováníenergie, potřebné pro uvolnění elektronu v blízkosti průměrného atomu o mnoho řádů déle než je tomu u skutečného experimentu. • S energií fotonů souvisí řada jevů od používání červenéžárovky při vyvolávání fotomateriálů v temné komoře po důvod, proč jsou listy fotosyntézujících rostlin zelené. • Měření rozděleníenergiífotoelektronů = fotoemisníspektroskopie je důležitým principem metod měření povrchovýchvlastnostílátek, např. nanoESCA.
Comptonův jev I • V roce 1923 zjistil A. Compton, že vlnová délkarozptýleného rtg.záření je většínež vlnová délka záření dopadajícího a navíc silně závisí na úhlu rozptylu. • Z rozboru plyne, že jev je způsoben nepružnými srážkami elektronů a fotonů, kterým je nutné kromě energie přisoudit i hybnost. • Příklad:
Comptonův jev II Elektron v pohybu po nárazu fotonu Dopadající foton Θ E2 = hf2; E2 < E1 E1 = hf1 Foton po srážce s elektronem Elektron hmotnosti m v klidu před nárazem fotonu (5)
De Broglieho hypotéza I • Nejzávažnější výsledky ukazovaly na kvantování mikroskopických veličin a na dualismus částic a elektromagnetických vln. • De Broglie vyslovil (na svou dobu a vzhledem k svému mládí odvážnou) hypotézu, že dualismus vln a částic je v mikrosvětěnormálnívlastnost. Vlny se tedy za určitých okolností projevují jako částice a naopakčásticím majícím hybnost lze přiřadit vlnovoudélku :
De Broglieho hypotéza II • Vychází se z analogie s fotony, u kterých E = hf a m0 = 0, což z STR vede na E = cp = hf . • Je zřejmé, že vlny odpovídající makroskopickým tělesům jsou (zatím?) neměřitelněkrátké, ale v mikrosvětě je tomu jinak : • Běžící člověk (100 kg, 10 m/s) 10-37m • Brouk Pytlík (0.001 kg, 1 cm/s) 10-29 m • Elektron (9.1.10-31 kg, 1.106 m/s) 10-10 m
De Broglieho hypotéza III • Obvod každé dráhy v Bohrově modelu je roven celistvému násobku De Broglieho vln. • Další objevy daly De Brogliemu zapravdu. Brzy po vyslovení jeho hypotézy byla například objevena difrakceelektronů. Protože De Broglieho vlnovádélka elektronů je opět srovnatelná s meziatomovýmivzdálenostmi jedná se opět o významnou metodu strukturníanalýzy. • S vlnovými vlastnostmi elektronů je nutné také počítat při konstrukci elektronovýchmikroskopů a urychlovačů.
Difrakce elektronů na krystalu a tenké vrstvě Zdroj elektronů Detektor Fólie Krystal Průsečnice kuželů s rovinou stínítka
Difrakce elektronů na krystalu a tenké vrstvě Vlnová délka pro elektronový paprsek:
Bohrův model atomu I • Jiným problémem bylo vysvětlit existenci diskrétníchčar v atomových spektrech. Vlnočet u první známé (Balmerovy) serie spektrálních čar vodíku vyhovoval vztahu : n = 3, 4 ... a R = 1.0974.107 m-1 je tzv. Rydbergova konstanta.
Bohrův model atomu II • Později byly objeveny další serie čar a všechny se daly popsat jednou rovnicí : n = k+1, k+2, k+3... • V UV oblasti k = 1 Lymanova • V VIS oblasti k = 2 Balmerova • V IR oblasti k = 3 Pashenova
Bohrův model atomu III • V této době již byly známy elektrony a atomové jádro a existoval i planetárnímodel. Jeho vadou byla ale skutečnost, že pohyb po uzavřené dráze je nutně pohybem zrychleným a elektrony by rychle vyzářily svou energii a za několik pikosekund spadly na jádro. Bohr skloubil planetární model s Planckovou kvantovou hypotézou.
Bohrův model atomu IV • Postuloval, že elektrony mohou být trvale jen v určitých stacionárních energetických, stavech a vyzařují nebo přijímajíenergii pouze při přechodech mezi stavy podle : • Energetickéhladiny, ke kterým takto dospěl souhlasily se spektry i u některých dalších atomů (Z): • Energie -E1 = -13.6 eV je energie základního stavu H
Rentgenovo záření I • V roce 1895 byl W. Röntgenem objeven i jev opačný k jevu fotoelektrickému : • Při dopadu urychlených elektronů je z látek emitováno elektromagnetické záření s vlnovou délkou řádově 10-10 m. Toto záření má složku spojitou(bílou), způsobenou zabržděnímelektronů a složku charakteristickou, která odpovídá emisnímuspektru látky v rtg. oblasti.
Rentgenovo záření II • Rtg. záření má vlnovoudélkusrovnatelnou s meziatomovýmivzdálenostmi v molekulách a pevných látkách a proto má obrovský význam při studiu struktury látek metodami rtg. difraktometrie. • Důležité jsou i metody rtg. defektoskopie, studující absorpci látek, mezi něž patří i lékařské aplikace a techniky spektroskopie, které zkoumají emisní a absorpční spektra látek a řada speciálních metod (EXAFS…).
Laser I • Obrovský průlom do mnoha oblastí vědy byl objev laserového záření. • Lasery jsou zdroje (IR, VIS, UV… ) záření, které je nebo může být : • kolimované • má malou rozbíhavost • monochromatické • intensivní • koherentní
*Laser II • Laser je založen na jevu stimulovanéemise. Při ní vyvolá vhodný foton při interakci s excitovaným atomem další foton, který je jeho přesnou kopií. • Volbou vhodných materiálů je možné dosáhnout inverzní populace excitovaných elektronů v nějakém metastabilním stavu na dostatečně dlouhou dobu a vhodným způsobem se spustí emise.
*Laser III • Laser bývá podlouhlého tvaru a jeho konce jsou částečná nebo úplná zrcadla, rovinná nebo dutá. Díky zrcadlům se fotony mnohonásobně vrací zpět do excitovaného media. Tím se vyvolá lavinový efekt právě v ose laseru a zúží jeho spektrum. • Mediem laseru může průhledný krystal nebo plyn, jak je tomu např. u HeNelaseru. Excitace se vytváří zářením nebo chemicky. • V poslední době se rychle rozvíjejí polovodičové lasery s důležitým použitím.
Heisenbergův princip neurčitosti I • V klasické fyzice předpokládáme, že každé měření je zatíženo určitou chybou, ale zlepšováním přístrojů a metod lze tuto chybu neustále zmenšovat. • V mikrosvětě se ale ukazuje, že výskyt určitých “chyb“ je principiální vlastností přírody, která nesouvisí přímo s vlastním měřením. Tento fakt musí kvantová mechanika respektovat. • Pomocí měření se ale princip neurčitosti nejsnáze a nejčastěji vysvětluje. To vede sice k názorným ale často ne úplně správným představám.
H. princip neurčitosti II • Jedno z vyjádření Heisenbergova principu neurčitosti lze psát ve formě : • Principneurčitostiplatípro různé, tzv. nekompatibilní(nebo nekomutativní)dvojiceveličin. Kromě souřadnice a odpovídající složky hybnosti mezi ně patří i čas a energie : • Kompatibilní dvojice, např. x a py však mohou společně ostrou hodnotu mít. • Neurčitosti vyplývající z Heisenbergova principu lze jistý jev chápat jako mezní dosažitelné.
Pád klasické fyziky • Na přelomu 19. a 20. století se nahromadily experimenty, které ukazovaly na principiální odlišnosti mikrosvěta a světa makroskopického. • Nejzávažnější výsledky ukazovaly na dualismus vln a částic a s ním související kvantování mikroskopických veličin. • Popis, který si mikrosvět vyžádal je bohužel daleko od běžnýchzkušeností a selského rozumu. • Klasická fyzika je v makrosvětě zpravidla dobrou aproximací, ale kvantové jevy zasahují i nutně sem. Tedy existují makroskopické jevy, jejichž výsledek je způsoben kvantovým chováním.
Kvantová teorie I • Pro zatím nejlepší teorii, která se snaží o vysvětlení mikrosvěta a sporů s klasickou fyzikou se vžil název kvantová mechanika. • Spíš by se ale hodil název pravděpodobnostnímechanika, protože její nejzávažnější a nejobtížněji „stravitelnou“ vlastností je právě fakt, že ukazuje, že popis mikrosvěta je principiálně možný pouze pomocí pravděpodobností. • S tímto faktem se například nikdy nesmířil A. Einstein, přestože sám stál u kolébky kvantové teorie. Tvrdil, že „Bůh nehraje v kostky“
Kvantová teorie II • Kvantová teorie vysvětluje chování mikrosvěta. Její extrapolace do makroskopického (normálního) světaale musí souhlasit s dobře ověřenou fyzikou klasickou. Existuje totiž jen jeden svět! Tomuto přirozenému požadavku se říká princip korespondence. • Přes všechny nesporné úspěchy kvantové teorie nezavrhujeme v makroskopické praxi klasické teorie, např. Newtonovy zákony nebo geometrickou optiku, protože jejich použití je mnohem jednodušší a přitom poskytuje často dostatečně přesné výsledky. • Ne ale vždy! Vždy je nutné vědět, kde mají klasické teorie své hranice.
Determinizmus versus pravděpodobnost I • Klasická mechanika je determistická – známe-li pohybové rovnice určitého tělesa a okrajové podmínky, jsme principiálně schopni určit její polohu a hybnost v libovolném čase v minulosti i budoucnosti. • Mikrosvět deterministický není. Je to vidět třeba na předchozím příkladu zobrazování s použitím jednotlivých fotonů, kdy fotony vychází z jednoho zdroje, prochází stejným optickým systémem, ale každý dopadne někam a předem nelze určit kam. Kvantová teorie musí tuto principiální vlastnost mikrosvěta odrážet. Proto je založena na pravděpodobnostech.
Determinizmus versus pravděpodobnost II • Extrapolace mikrosvěta do makrosvěta vede ke zdánlivému determinismu. Kvantová teorie totiž přiřadí každému řešení jistou pravděpodobnost. U některých řešení je ovšem astronomickymalá. Tím může podpořit náš předchozí názor, že se jedná o řešení téměřnemožná. • Předchozí postup sice připomíná metody klasické statistické fyziky, například u teorie plynů, ale ta ve skutečnosti předpokládá deterministické chování jednotlivých částic. • Kvantové efekty se nemusí vyrušit ani pro velké množství částic. Ty potom bývají nerozlišitelné a chovají se podle neklasických kvantových statistik – Bose-Einstein / Fermi-Dirac.
Vlnová funkce I • Experimentálně je nade vší pochybnost dokázáno, že fotony se nedělí. Změna intenzity světla tedy vede ke změně jejich počtu. Neexistujeteorieani teoretická možnost určit, kamdopadnejeden konkrétní foton. Teprve až bude fotonů obrovskémnožství bude zobrazení vypadat tak, jak očekáváme v závislosti na analýze příslušného zobrazovacíhosystému. Tu bychom mohli učinit nejobecněji pomocí kvantovéelektrodynamiky(QED), která popisuje základní interakci elektronu a fotonu. • V praxi ji však provádíme vždy s využitím nejednoduššího modelu, který ještě splňuje požadavek dané přesnosti: • užitím představy paprsků pokud postačuje model geometrickéoptiky • nebo pomocí skládánívln u difrakčních experimentů. • Stejně postupujeme i u jiných mikroskopickýchčástic.
Vlnová funkce II • Provedeme-li s částicemi například vhodně navržený experiment s dvojitou štěrbinou, dostáváme obdobné výsledky jako s monochromatickým vlněním (světlem). • Není tedy překvapivý předpoklad, že v pozadí existence částic je jakási ‘hmotnostní’ vlna. V současné době se nazývá vlnováfunkce. • V analogiích lze pokračovat : Jak známo, intenzita světla v jistém bodě zobrazení je úměrná druhé mocnině intenzity elektrického pole EMA záření. Budeme-li ale zobrazovat foton po fotonu, můžeme intenzitu světla chápat jako pravděpodobnost dopadu fotonu do daného místa.
Vlnová funkce III • Analogicky požadujeme, aby druhámocninaamplitudyvlnovéfunkce, která je komplexní, protože musí popsat i fázové posuny, byla rovná hustotěpravděpodobnostivýskytu příslušné částice v daném bodě a čase. • Tedy vlnováfunkce podobně jako amplituda elektrické intenzity EMA vlny závisínapolozea na časea sama o sobě není přímo měřitelnou veličinou. Uvědomme si, že například při difrakci EMA vln neumíme přímo měřit intenzitu elektrické ani magnetické složky EMA pole, ale jen intenzitu záření. Neznáme tedy fázi příchozích vln. To je obtíž například ve strukturní analýze, kde zkoumáme, strukturu ‘difrakční mřížky’. Nazývá se fázovýproblém.
*Vlnová funkce IV • Vlnovou funkci lze nicméně za příznivých okolností nalézt a vypočítat příslušné pravděpodobnosti. • Aby to bylo co nejjednodušší musí být vlnová funkce zpravidla normovaná. • Rozličné fyzikálníveličiny lze získat působíme-li na vlnovou funkci vhodnýmioperátory. • Například je operátor celkové energie a je operátor hybnosti.
Kirchhoffův zákon I • Platnost Kirchhoffova zákona (v jednodušší podobě) lze ověřit experimentálně: Mějme těleso s dvěmi různými plochami I a II. Do blízkosti plochy I dejme plochu II’ spojenou s teploměrem, stejnou jako je plocha II a obráceně do blízkosti plochy II dejme plochu I’ s teploměrem. • Za jistou dobu seustaví rovnováha a všechny plochy budou na stejné teplotě. Budou-li i emisní koeficienty a i koeficienty absorpční, musí platit: • .
Kirchhoffův zákon II • Je tedy vždy emisní koeficient úměrný koeficientu absorpčnímu: • Je-li například plocha I černá a tedy má I 1 a plocha II částečně odráží II < 1, bude i I > II. • Takto lze argumentovat dokonce pro absorpčí a emisní koeficienty pro každou vlnovou délku. • . ^
Tepelné záření - příklad • Mějme keramickou konvici s = 0.7 a nerezovou konvici s = 0.1. V každé je 0.75 l čaje o 95° C. Odhadněte jaký výkon odchází z každé z nich do okolí o teplotě 20° C ? • Předpokládejme, že každá konev je přibližně krychle o hraně 10 cm. Každá současně emituje i absorbuje. • . • Keramická konvice tedy vyzařuje 21 W a nerezová (lesklá) jen 3 W. Proto vydrží čaj ve druhé konvici teplý déle. Zde ale bude ještě hrát ve skutečnosti roli vedení tepla! ^
Wienův zákon – příklad I • Odhadněte teplotu na povrchu Slunce. Maximum jeho spektrální intenzity m 500 nm leží ve viditelné oblasti : ./. ^
Wienův zákon – příklad II • Teplota vlákna žárovek a náplň jejich baňky se navrhují podle užití: 2200 °C u vakuových do 25 W, 2600 °C u běžných, plněných směsí Ar & N2a 3000 °C u speciálních halogenových, promítacích a fotografických. • Wolfram je selektivní zářič, takže ve viditelné oblasti svítí více, než by odpovídalo jeho teplotě. Kde by leželo maximum vlnové délky u běžné žárovky, kdyby se chovala jako dokonale černé těleso? ./. • Maximum tedy leží v infračervené oblasti a do ní odchází i největší část vyzářené energie. Část spektra ale zasahuje do oblasti viditelné. Tepelné záření působí příjemně. ^
Wienův zákon – příklad III • Jak bude vypadat hvězda, která má povrchovou teplotu 32500 K.? • . • Maximum leží v ultrafialové oblasti a intenzita s rostoucí vlnovou délkou klesá. Hvězda se bude jevit jako modrobílá. ^
Comptonův jev I • RTG záření o vlnové délce 0.14 nm se comptonovsky rozptyluje na bločku uhlíku. Jaká bude vlnová délka záření rozptýleného pod úhlem 0°, 90°, a 180°? • Pro vlnovou délku rozptýleného záření platí : • . • Výraz má rozměr délky nazývá • se Comptovona vlnová délka. Zdetedy platí: • A tedy a) b) c) ^
Příklad - Fotoelektrický jev I • Cesiová vrstva s výstupní prací Wo = 1.93 eV, je ozařována ze vzdálenosti r = 3.5 m světlem sodíkové výbojky, kde nejsilnější čára má vlnovou délku = 590 nm, s výkonem P=100 W. Rozměry elektronu zatím neznáme. Definují se ale účinné průřezy vzhledem k určitým jevů. Pro interakci s fotonem jej lze chápat jako kruhovou plošku o poloměru re = 5.10-11 m. • Za jak dlouho by elektron načerpal dostatečnou energii, aby mohl být emitován při izotropním toku energie ? • Za jakou střední dobu proletí jeden foton účinným průřezem elektronu? • Účinný průřez elektronu je :