570 likes | 729 Views
NAPARTICULAS POLIMERICAS PREPARAÇÃO E APLICAÇÃO AULA 4 QF-933-2008. Introdução. Liberação Controlada de Fármacos. Liberação de fármacos a uma velocidade e/ou numa localização indicada para a necessidade do corpo ou estado da doença em um período especificado de tempo:
E N D
NAPARTICULAS POLIMERICAS PREPARAÇÃO E APLICAÇÃO AULA 4 QF-933-2008
Introdução Liberação Controlada de Fármacos • Liberação de fármacos a uma velocidadee/ou numa localização indicada para a necessidade do corpo ou estado da doença em um período especificado de tempo: • Liberação temporal: controle sobre a velocidade da liberação do fármaco • Liberação espacial: controle sobre a localização do fármaco Hamid Ghandehari in <hghandeh@rx.umaryland.edu >
Introdução = Molécula do fármaco TUMOR LIBERAÇÃO EXCLUSIVA DO FÁRMACO A TIPOS ESPECÍFICOS DE CÉLULAS Liberação espacial Hamid Ghandehari in <hghandeh@rx.umaryland.edu>.
Introdução Liberação temporal P L s m a l e v e l Convencional Liberação ordem zero Efeitos adversos Níveis tóxicos Faixa terapéutica Concentração Min. efetiva Sem efeito Tempo/dosagem administrada
Sistema de Liberação Controlada • O comportamento do fármaco in vivo pode ser mudado drasticamente ao incorpora-lo num carregador. Os veículos de liberação de fármacos coloidais podem prover: • Liberação lenta de compostos as vezes tóxicos • Habilidade de guiar uma distribuição sistêmica • Habilidade de proteger fármacos de degradação ambiental • Habilidade de direcionar a alvos específicos diretamente em tecidos • Sistemas coloidais em uso são: • Nanopartículas d<1mm • Microesferas d>1mm • Emulsões 100nm<d<5mm • Lipossomas 20nm<d<2mm
Micro/nanoesferas e capsulas Monoliticas NANOESFERAS NANOPARTICULAS Reservatorio NANOCAPSULAS Adapted of Lambert,G. Oligonucleotide and Nanoparticles Page, <http://perso.clubinternet.fr/ajetudes/nano/index. html> dez/ 2003.
METODOS DE PREPARAÇÃO • 1- Através de polimerização de monômeros • Problemas: obtidas induzindo-se a polimerização. Difícil controle da extensão da reação-massa molar não controlada. Purificação posterior. Interação do polímero com o ativo. • 2- Diretamente da macromolécula ou polímero pré-formado.
Polímeros biodegradaveis O O CH3 O CH2 C O n C (CH2)5 O n O CH C n Poli(acido glicolico) ou PGA Poli (-caprolactona) ou PCL Poli(acido lactico) ou PLA Poly(3-hydroxybutyrate-co-valerate) orPHBV
BIOPOLÍMEROS TÍPICOS Polímeros biodegradáveis e bioabsorvíveis;Degradação depende de: MM, estrutura, solubilidade,composição da cadeia,grau de cristalinidade. (PLGA)
EMULSIFICAÇÃO/EVAPORAÇÃO DE SOLVENTE • Trata-se de um método simples, de fácil transposição de escala e cuja realização em condições assépticas garante a esterilidade final do produto. • Em linhas gerais o polímero é dissolvido em solvente volátil em água, como CHCl3 ou CH2Cl2. Se dispersa em água por emulsificação com temnsoativo apropriado. Algumas revisões: Couvreur et al. Eur. J. Pharm. 41, 2 (1995); Alonso. Nanoparticulate drug carrier technology. In Cohgen (Ed). Microparticuate Systems for the delivery of proteins and Vaccines. M. Dekkrt, N.Y. 2996, p. 203; Soppomath et al., J. Control. Rel. 70, 1 (2001).
MÉTODOS MAIS IMPORTANTES DE • PREPARAÇÃO DE NANOPARTÍCULAS • Maria I. Rê e M.F.A. Rodrigues-IPT-2004 • 1-MÉTODO DE EMULSIFICAÇÃO/EVAPORAÇÃO DE SOLVENTE • FASE AQUOSA • Água destilada • Tensoativo • FASE ORGÂNICA • Solvente orgânico • Homogenizaçào Polímero • Sonicação Agente ativo • EMULSÃO • Óleo em água • Extração do solvente • Evaporação do solvente • SUSPENSÃO DE NANOPARTÍCULAS Sanchez et al. Int. J. Pharm. 99, 263 (1993); Zambaux et al. J. Control. Rel. 50, 31 (1998); Verrechia et al., J. Biom. Mater. Res. 27, 1019 (1993) Após a formação da nanoemulsão, o solvente se difunde para a fase externa (extração para a fase aquosa) até saturação da mesma. Com a evaporação das moléculas do solvente que atingem a interfase fase aquosa-ar, reestabelece-se o gradiente de concentração, ou seja, a força motriz para a difusão do solvente orgânico das nanogotas para a fase aquosa. Ao ser eliminado o solvente, o polímero precipita levando a formação das nanoesferas.
PREPARAÇÃO Evaporação de solvente modificado(nanoesferas). 2 solventes solúveis entre si(um é não-solvente para o polímero) SEI, 22.000x, 20 kV, topografia Laboratório - Preparação: 10% (surfatante), 0,8% (polímero), 40%etanol/acetona SEI, 2.300 x, 20 kV, topografia
APLICAÇÃO 1- Formação de nanoesferas para substâncias lipofílicas. Este método tem sido modificado para uma emulsão múltipla do tipo água/óleo/água. 2- Limitações: a) Emulsão óleo/água deve ter uma fase dispersa (óleo) bastante fina e homogênea (requer bastante tensoativo e técnicas de agitação elevada). b) Solventes orgânicos (clorados) e tensoativos usados (álcool polivinílico, p.ex.) não são compatíveis com aplicações biológicas. 3- Alternativas: Uso de tensoativos como albumina de soro humano . 4- Propriedades otimizadas: diâmetro médio e distribuição de tamanho; re-suspensão num veículo aquoso sem agregação; teor de fármaco; taxa de liberação, taxa de degradação; esterilidade; apirogenecidade; e teor de solvente residual. 5- Variáveis: Volume da fase aquosa para a fase orgânica; concentração do polímero na fase orgânica; concentração do fármaco na fase orgânica; presença de tensoativo em ambas fases (orgânica e aquosa); solubilidade do fármaco na fase aquosa (nível de saturação); método e velocidade de agitação.
-2-MÉTODO DE EMULSIFICAÇÃO ESPONTÂNEA/DIFUSÃO DE SOLVENTE (Niwa et al. J. Pharm. Biopharm. 25, 89 91993). Um solvente miscível em água (acetona, etanol ou metanol) é misturado ao solvente immiscível (CHCl3, ou CH2Cl2). A difusão espontânea do solvente miscívil no meio aquoso cria uma turbulência interfacial entre as duas fases levando a formação de partículas menores. Fase aquosa Fase orgânica Difusão rápida do solvente miscível com água Nanopartículas Quanto maior a proporção do solvente miscívil na mistura menores as partículas formadas.
3-MÉTODO DE NANOPRECIPITAÇÃO • FASE AQUOSA • Água destilada • Tensoativo • FASE ORGÂNICA FASE ORGÂNICA • Solvente orgânico Solvente orgânico • Óleo Polímero • Polímero Agente ativo • Agente ativo • Agitação • SUSPENSÃO DE NANOPARTÍCULAS Envolve o uso de um solvente orgânico que é completamente solúvel na fase aquosa externa consequentemente a extração e a evaporação do solvente não são nescesárias para a precipitação do polímero. p.ex. acetona nanoesferas nanocapsulas Fessi et al. Eur Pat. 0275796 B1 (1987).
Metodo – Encapsulação de agente ativo “Nanoprecipitação” – método de deslocação de solvente 1,2% PLURONIC (1)3% (PLGA / acetona) + 4 mg de agente ativo (2)(2) colocado em (1)
PLGA nanoesferas – Encapsulamento de violaceina PLGA-PLURONIC-PVA system
4-MÉTODO DE SALTING-0UT • FASE ORGÂNICA • Solvente orgânico • Polímero • Agente ativo • FASE AQUOSA • (sal) • Água destilada • Agitação Tensoativo (PVA) • EMULSÃO • Água em óleo • Água destilada • SUSPENSÃO DE NANOPARTÍCULAS Esta é baseada na formação de uma emulsão pela incorporação, sob agitação, de uma solução aquosa saturada de alcool polivinílico (PVA) em uma solução de polímero dissolvido em acetona. O PVA tem o papel de estabilizar a dispersão. Aqui a miscibilidade das duas fases é impossibilitada pela saturação da fase aquosa com PVA. A precipitação do polímero ocorre quando uma quantidade adicional de água é adicionada permitindo então a difusão da acetona para a fase aquosa. Este método é adequado quando ativo e polímeros são solúveis em solventes polares como acetona ou etanol. Ibrahim et al. Int. J. Pharm. 87, 239 (1992); Allemann et al., Int. J. Pharm. 87, 247 (1992).
5-MÉTODO DE EMULSIFICAÇÃO/DIFUSÃO DE SOLVENTE • FASE AQUOSA (saturada em solvente orgânico) • Água destilada • Tensoativo • FASE ORGÂNICA • (saturada em água) • Agitação Solvente orgânico • Polímero • Agente ativo • EMULSÃO • Óleo em água • Água destilada • SUSPENSÃO DE NANOPARTÍCULAS Envolve o uso de um solvente parcialmente miscível em água, que é previamente saturado em água para garantir o equilíbrio termodinâmico inicial de ambas as fases. A precipitação Ocorre quando uma quantidade adicional de água é adicionado ao sistema, permitindo então a difusão do solvente para a fase aquosa. Leroux et al. Eur. J. Pharm. Biopharm. 41, 14 (1995). Quintanar-Guerreo et al. Pharm Res. 15, 1056 (1998). Formada a emulsão do tipo óleo/água e o tensoativo é adsorvido na superfície das gotas da fase orgânica dispersas na fase aquosa A adição de água ao sistema desestabiliza o estado de equilíbrio e promove a difusão do solvente na fase aquosa levando à formação das nanopartículas
VANTAGENS Este método apresenta algumas vantagens sobre o método de nanoprecipitação como a possibilidade de controle do tamanho das nanopartículas. Estas apresentam tamanhos superiores àquelas preparadas por nanoprecipitação, normalmente entre 250-600 nm, dependendo de vários parâmetros como tipo e concentração do tensoativo e do polímero, tempo e velocidade de agitação.
Métodos para a preparação de nanopartículas carregadas com fármacos convencionais -------------------------------------------------------------- Método Polímero Fármaco Tamanho(nm) o/w PLA, PLA-b-PEG Lidocaine 247-817 o/w PLA-PEG-PLA Progesterone 193-335 o/w PLGA Dexamethasone 109-155 o/w PEO-b-PBLA Doxorubicin 37 solv-disp PMLAiPr Halofantrin 150-160 solv-disp PMLAnHe Halofantrin 90-190 solv-disp PLGA Vancomycin 160-170 solv-disp PLGA Procaine Hydr. <210 solv-disp PCL, PLA, Nimodipine 81-132 PCL-co-PLA o/w PEO-b-PCL Enalapril maleate 50 o/w PLA Lidocaine 115-123b aPBLG = poly(g-benzyl L-glutamate); PBLA = poly(b-benzyl L-aspartate); PMLAiPr = poly(b-malic acid isopropil ester); PMLAnHe = poly(b-malic acid neohexil ester). b Dimension of unloaded particles.
PREPARAÇÃO DE MICRO E NANOPARTICULAS CARREGADAS COM FÁRMACOS PROTEÍCOS.a Método Polímero Proteina Tamanho (nm) w/o/w PLGA L-asparaginase 196-226 w/o/w PLGA BSA ms w/o/w PLGA BSA 100-200 w/o/w PLGA, PLA BSA ms w/o/w PLGA/PLA blend BSA ms w/o/w PLGA, PCL BSA 20-1000 w/o/w PLA Protein C 230-340 w/o/w PLGA FITC-BSA ms FITC-HRP w/o/w PLGA TRH 250-800 w/o/w PLGA IL-1a+BSA ms o/w PLGA Rism. porcine ms o/w Biod. polym. Peptides - PLGA BSA 300-600 w/o/w PLGA rhBMP ms w/o/w PEG-PLGA BSA - w/o/w PEG-co-PBT BSA ms w/o/w PLGA-b-PEO BSA ms ams = microsize; CP = coprecipitation; FITC-BSA = fluorescein isothiocyanate-labeled BSA; FITC-HRP = fluorescein isothiocyanate-labeled horseradish peroxidase; IL-1a = recombinant human interleukin-1a; rhBMP = recombinant human bone morphogenetic protein-2
METODOLOGIA No método original SESD, PLGA é dissolvido na mistura de solventes orgânicos consistindo em diclorometano e acetona, que são os solventes orgânicos menos miscíveis em água e um solúvel livremente em água, respectivamente. A solução polimérica obtida acima é lentamente vertida no emulsificante contida na fase aquosa com agitação mecânica. As nanopartículas são formadas via dos seguintes passos: quando a solução polimérica é agregada, gotículas do emulsificante são formadas na fase aquosa; acetona rapidamente difunde para fora de cada gotícula de emulsificante, reduzindo drasticamente seu tamanho a ordem-nano e consequentemente processo de evaporação do solvente, no qual o diclorometano remanescente é removido do sistema, fazendo que as gotículas solidifiquem para finalmente formar as nanopartículas poliméricas.
COMENTÁRIOS Este processo parece bastante razoável, baseado num fenômeno físico-químico interessante. Entretanto, devido a quantidade considerável de diclorometano residual, as partículas tendem a se agregar durante o processo de evaporação do solvente. Logo, quando uma grande quantidade de solução polimérica é usada, a agregação não pode ser prevenida devido a que a probabilidade de colisão entre partículas na fase aquosa poderia aumentar. Alem disto, o processo de recuperação e purificação no método SESD original deverá ser melhorado, já que a ultra-centrifugação ( 156200 x g, 1 h) é inaceitável para processos industriais em grande escala de produção. Também que se evitar o uso de solventes clorados tais como diclorometano devido a sua toxicidade.
No processo modificado-SESD, a mistura de dois solventes orgânicos miscíveis em água, tais como etano:acetona ou metanol:acetona foram empregados em vez de usar a mistura de diclorometano e acetona. Esta alteração previne a agregação de partículas ainda em condições de alta quantidade de solução do polímero, resultando na melhora do rendimento aceitável para propósitos industriais. Esta alteração também permite alguma vantagens adicionais; por exemplo o uso de solventes tóxicos como o diclorometano o processo de purificação e recuperação podem ser simplificados usando ultrafiltração para omitir processos de evaporação do solvente; e nanopartículas uniformes podem ser obtidas sempre por agitação suave.
Figura 2. Efeito de quantidade adicionada de PLGA sobre o rendimento de nanopartículas. (●) método modificado SESD (Etanol:acetonas 4:6); (O)SESD original (DCM:acetona 4:96) Figura 3. Efeito da concentração de PLGA no rendimento de nanopartículas preparadas por etanol:acetona 4:6.
Tabela 1. Diametro e polidispersidade de nanopartículas de PLGA preparadas pelo método modificado-SESD.
Tabela 2. Diâmetro médio e PVA residual nas nanopartículas de PLGA após lavagem e ultrafiltração Figura 3. Efeito da concentração de PVA no rendimento da nanopatícula preparada por etanol:acetona 4:6. PLGA 8%.
Preparação de nanopartículas Salting-out. Tipicamente, 50 g de solução aquosa de cloreto de magnésio hexahidratado (30,4%, p/p) e PVAL (5- 21%, p/p) são agregados sob agitação mecânica a 30 g de fase orgânica contendo 9,0% (p/p) de E L100-55 (polímero eudragit) em acetona. A agitação foi mantida a 2000 rpm por 15 min. Após emulsificação, 50 g de água pura foram adicionados para induzir a difusão do solvente orgânico na água e a formação das nanopartículas. Emulsificação-Difusão. Para este método, 30 g de uma solução aquosa de PVAL (7–21%, p/p) foi adicionado sob agitação a 21 g de uma solução orgânica de polímero em álcool benzílico (14.3%, p/p). A emulsificação resultante o/w foi agitada continuamente a 2000 rpm por 15 min, e logo, 660 g de água foram introduzidos para permitir a difusão do solvente orgânico para a água. levando a formação das nanopartículas. Nanoprecipitação. A fase orgânica foi preparada por dissolver E L100-55 (360–810 mg) em 25 ml de solvente orgânico (acetona, dimetil sulfoxido, álcool isopropílico, etanol, ou lactato de etila). A solução orgânica foi adicionada na fase aquosa (50 ml) contendo PVAL (0.4%, p/p) e agitada magneticamente.
Tabela 1. Influencia da concentração de PVA na fase aquosa no tamanho da nanoparticula preparada por salting- out e emulsificação- difussão
Para copolímero como PVA na interfase da gotícula, além da redução da tensão interfacial outro citério de estabilização inclui: (1) coberta total da gota, (2) uma forte fixação na interfase, (3) formação de um filme grosso e (4) uma conformação ótima das cadeias do polímero na fase externa. Estes fenômenos tem sido pesquisados para o PVA na interfase solvente orgânico/água. De fato, dois importantes conclusões foram concluídos destes estudos: (i) interpenetração é o mecanismo proposto para explicar a ligação do PVA na interfase da gotícula da emulsão, e(ii) a forte interação do PVA na interfase leva a uma adsorção irreversível do PVA na superfície da nanopartícula. Dados dp PVA residual na nanopartícula, que estão presente, demonstram a presença de PVA não- removivel na nanopartícula. Isto sugere que PVA-E L100-55 interpenetração deveria ocorrer na interfase da gotícula durante a emulsificação (Figura 2). Logo, é assumido que o pacote de cadeias compactada resultam desde uma interpenetração levando a formação de filmes rígidos na interfase da gotícula que resiste cortes e confere estabilidade mecânica para as gotículas da emulsão durante a emulsificação.
Tabela II mostra os valores solvente-água que aumentam na seguinte ordem: etanol < dimetil sulfoxido < álcool isopropilico < etillactato < acetona. Comparando a mesma concentração de polímero (p.ex. 14.4 mg/ml), o tamanho médio da NP preparado usando estes solventes aumenta quase na mesma ordem: etanol < dimetil sulfoxido <álcool isopropil < acetona < etillactato. Etanol, mostrando o valor menor (27.0 MPa1/2), produz a menor NP. Inversamente, acetona, com o valor mais alto (34.4 MPa1/2), deu a NP com o tamanho médio maior. Em geral, esta primeira aproximação sugere que a afininidade solvente-água, correspondendo ao menor valor solvente-água, poderia melhorar a difusão do solvente na fase aquosa externa e logo permitir obter a menor NP.
CONCLUSIONS Os tamanhos por salting-out (123–710 nm) e emulsificação-difusão (108–715 nm) foram maiores que os de nanoprecipitação (147–245 nm). Para os método o tamanho das naniopartículas foram associados as propriedades físico-químicas do solvente e da fase aquosa usadas para suas preparações. Tanto para salting-out como para emulsificação-difusão a nanoemulsão formada foi analisada por MEV e o papel do PVA como emulsificante durante o processo de emulsificação foi amplamente descrito (teoria de emulsificação). Vários mecanismos de estabilização fora, envolvidos: (i) na interfase da gotícula na cadeia polimérica pode não somente reduzir a tensão superficial mas também induzir uma estabilização mecânica como estérica, e (ii) na centro da solução as cadeias de PVA podem aumentar a viscosidade da fase externa induzindo uma estabilização hidrodinâmica. As características do solvente como solubilidade e parâmetros de interação foram considerados para relacionar as propriedades do solvente na formação das nanopartículas (fenômeno de difusão dirigida)(diffusion-stranding phenomenon). Em geral, estas foram encontrada proporcionais a o tamanho das nanopartículas. de outra maneira, usando E L100-55 como polímero, solventes com um (interação de solvente-água) ≈ 11 (ou Δ (solubilidade solvente-água) ≈ 27 MPa1/2) permitem nanopartículas com um faixa larga para obter tamanhos médios.
Isto demonstra que interação de água com solvente e assim movimento de difusão do solvente, joga um papel importante na explicação da variação do tamanho das nanopartículas pelo método de nanoprecipitação. Finalmente, estes experimentos mostram não somente o papel de cada componente básico (solventes, polímeros, e sais) nas propriedades físico-químicas das fases aquosa e orgânica (viscosidade, tensão superficial e solubilidade), mas também o efeito de tais propriedades na formação das nanopartículas. Isto é importante já que este conhecimento é importante no controle racional de parâmetros ou variáveis que influenciam a formação das nanopartículas permitindo o desenho de nanopartículas com determinados tamanho, características especificas para alvos dirigidos para atingir células ou órgãos.
MOLECULAR PHARMACEUTICS. 2, 373-383 (2005) A função mais importante da transferina (Tf), uma glicoproteína encontrada abundantemente na sangue, é transportar ferro através da sangue a células através de receptores (TfR). Como os receptores TfR são sobre-expressados em tecidos malignos comparados com os normais, Tf é também pesquisado intensamente como ligante para fármacos com alvos dirigido.
Formulação de NPs: NPs contendo Tx foi preparada pelo método de emulsão-evaporação. Em breve: PLGA e Tx em cloroformio e logo emulsificado em 5% de PVA. A emulsificação foi feita na presença de um sonicador. Após agitação por 12 h e evaporação do solvente as NPs foram lavadas com água para eliminar o PVA e logo liofilizadas.
Figure 3. Internação celular de nanopartículas com Tf-conjugado e não-conjugado em células MCF-7. Uma suspenssão de NPs (100 ug/mL) foi incubado com MCF-7 (5 x 104 células) por 1 h, as células foram lavadas e o nível de NPs na célula foi determinado por HPLC. Para determinar a competitividade na inibição de internalização das NPs-Tf conjugadas, um excesso de Tf livre (50 ug) foi adicionado ao médio antes de incubar as células com NPs de Tf-conjugado.
Atividade anti-proliferativa do Tx ( ▄ ), Tx-NPs(●) e Tx-Tf-NPs (▲)