400 likes | 707 Views
Akademia Rolnicza Im. Hugona Kołłątaja. Wydział Inżynierii Środowiska i Geodezji Katedra Inżynierii Wodnej. Równanie Chezy (koryto doświadczalne). Marcin Prokopek, II rok IŚ Mateusz Pomietło, II rok IŚ Krzysztof Rejnowicz, II rok IŚ Dr inż. Leszek Książek. Kraków, czerwiec 2007r.
E N D
Akademia Rolnicza Im. Hugona Kołłątaja Wydział Inżynierii Środowiska i Geodezji Katedra Inżynierii Wodnej Równanie Chezy(koryto doświadczalne) Marcin Prokopek, II rok IŚ Mateusz Pomietło, II rok IŚ Krzysztof Rejnowicz, II rok IŚ Dr inż. Leszek Książek Kraków, czerwiec 2007r.
Spis treści • Wstęp • Budowa koryta • Pomiary • Czynności wstępne • Pomiar rzędnych • Obliczenia • Tabela pomiarów • Wiadomości wstępne • Zestawienie wyników • Literatura Kraków, czerwiec 2007r.
Wstęp • W odróżnieniu od przepływów w rurociągach, w których woda płynie pełnym przekrojem a ruch wody nie zależy od układu osi rurociągu lecz od spadku ciśnienia, w rowach, kanałach i rzekach zwanych korytami otwartymi, woda płynie ze swobodnym zwierciadłem wody, nad którym panuje ciśnienie atmosferyczne. Rozpatrywany poprzednio przepływ w rurociągach nazywany jest przepływem ciśnieniowym. W przypadku przepływu wody przewodem podziemnym ale nie pełnym przekrojem, tzn. gdy występuje swobodne zwierciadło wody, przewód taki pod względem hydraulicznym zaliczany jest do koryt otwartych czyli ściślej do przewodów o przepływie bezciśnieniowym. Wszystkie rozważania dotyczą ruchu ustalonego (trwałego), tzn. przepływu, którego obraz nie ulega zmianie w czasie a wielkości opisujące ruch wyrażone są w postaci funkcji zależnej wyłącznie od położenia.
Wstęp • Określenie prędkości średniej w przekroju poprzecznym cieku stanowi ważne zagadnienie w przy rozwiązywaniu większości zagadnień przepływu cieczy. Posługiwanie się uśrednionymi parametrami przepływu w poszczególnych przekrojach poprzecznych, które obarczone są niepewnością (błędem) w wielu przypadkach jest koniecznością. Alternatywą bowiem są kosztowne pomiary lub przeprowadzanie symulacji z wykorzystaniem modeli numerycznych. • Modele matematyczne obiektów fizycznych, którymi są również odcinki rzeki, kanału są zawsze uproszczeniem w stosunku do rzeczywistości. W praktyce model jest kompromisem pomiędzy kosztem uzyskania rozwiązania i pozyskania wystarczającej ilości parametrów charakteryzujących obiekt a dokładnością wyniku.
h vś Dno Wstęp Rozkład prędkości przypływu w pionie hydrometrycznym nie jest równomierny. Najniższe prędkości występują przy dnie wskutek oporów stawianych strugom wody przez materiał denny. Należy zauważyć, że w korytach naturalnych prędkość przy dnie nie jest równa zero, ponieważ w warstwie granicznej dna odbywa się ruch wody między cząstkami materiału dennego. W kierunku zwierciadła wody prędkość rośnie, osiągając wartości największe w strefie przypowierzchniowej. Maksimum prędkości występuje nie na poziomie zwierciadła wody, a nieco poniżej, ze względu na opory występujące na granicy ośrodka wodnego i powietrznego. Wykres przedstawiający rozkład prędkości w pionie nazywa się tachoidą .
Wstęp – budowa koryta Suwnica pomiarowa jeździ po szynach. Zaopatrzona jest w szpilkę pomiarową. Szpilka pomiarowa służy do pomiaru rzędnych dna i zwierciadła wody Koryto pomiarowe z możliwością regulacji nachylenia
Wstęp – budowa koryta Schemat działania sztucznego koryta rzecznego
Pomiary • Nasze badanie prowadziliśmy dla trzech położeń koryta: Spadku I4=0,000, spadku I5=0,0083, oraz I3=0,0084 ale o przeciwnym nachyleniu. Dla każdego położenia koryta musieliśmy policzyć następujące wielkości: rzędna dna w przekrojach 2-2 i 8-8, rzędne zwierciadła wody w przekrojach 2-2 i 8-8, odległość miedzy przekrojami oraz przepływy które odczytywaliśmy z aparatury pomiarowej koryta. • Pomiarów dokonywaliśmy dla trzech różnych przepływów: małego – około 30 – 45 [m3/h], średniego – około 95 – 110 [m3/h], oraz dużego – około 145 – 155 [m3/h] • W sumie musieliśmy dokonać 36 pomiarów: dla każdego nachylenia koryta i każdego przepływu w każdym przekroju mierzyliśmy rzędną dna i zwierciadła wody.
Pomiary – czynności wstępne • Wspólna dla każdego z nachyleń koryta pomiarowego była odległość między przekrojami oraz położenie przekrojów. Dlatego w pierwszej kolejności musieliśmy wyznaczyć przekroje 2-2 i 8-8 8-8 2-2
Pomiary – czynności wstępne • Następnie musieliśmy zmierzyć odległość miedzy przekrojami, która będzie niezbędna do wyznaczenia spadku linii energii. 8-8 2-2 L = 6 [m]
Pomiary – czynności wstępne • Zdjęcia 1, 2 i 3 przedstawiają pomiar odległości na między przekrojami 2-2 i 8-8. Zdjęcie 1 - pomiar na przekroju 2-2, a zdjęcia 2, 3 - pomiar na przekroju 8-8. Odległość między przekrojami wynosiła L = 6 [m] 1 2 3
Pomiary – pomiar rzędnych • Do pomiaru rzędnych zwierciadła wody i rzędnych dna w przekrojach 2-2 i 8-8 używaliśmy specjalnej suwnicy zaopatrzonej w wyskalowaną szpilkę pomiarową. Rzędne odczytywaliśmy w [cm] z dokładnością do 0,1 [cm]. Suwnica przesuwa się po szynach koryta co umożliwia wygodny pomiar wysokości rzędnych. • Prawidłowy pomiar polegał na umieszczeniu szpilki pomiarowej na takiej wysokości aby praktycznie samym tylko końcem dotykała zwierciadła wody lub dna koryta. Należało tez zwracać uwagę aby mierzyć w miejscach, w których woda przyjmuje raczej taflę spokojną, ponieważ błędy pomiarowe wynikające z falowania wody mogą sięgać nawet kilku milimetrów. Suwnica pomiarowa
Pomiary – pomiar rzędnych 4 5 6 7
Pomiary – pomiar rzędnych • Zdjęcie 4 i 5 przedstawia prawidłowe ustawienie szpilki pomiarowej nad zwierciadłem wody – szpilka nie jest ani ponad zwierciadłem, ani nie jest zanurzona. • Zdjęcie 6 i 7 przedstawia nieprawidłowe ustawienie szpilki pomiarowej nad zwierciadłem wody – szpilka jest lekko ponad zwierciadłem wody (zdjęcie 6), oraz szpilka jest zanurzona w wodzie (zdjęcie 7). 2-2 8-8 • Schemat pomiaru rzędnej zwierciadła wody w przekroju 2-2 i 8-8
Pomiary – pomiar rzędnych • Pomiary wysokości zwierciadła wody na przekroju 2-2 i 8-8 – szkic przedstawia samą czynność bez uwzględniania obudowy koryta. 8-8 2-2
Obliczenia – tabela pomiarów • Wyniki pomiarów dla pierwszego położenia koryta zestawiono w tabeli nr 1
Obliczenia – wiadomości wstępne • Żeby wyliczyć prędkość średnią wody w korycie otwartym ze wzoru Chezy, potrzebujemy obliczyć wysokość linii energii, a nie samą wysokość napełnienia. • Napełnienie jest to różnica między rzędną zwierciadła wody, a rzędną dna. • Linia energii jest sumą napełnienia i wysokości prędkości w zadanych przekrojach. • V2/2g – wzór na wysokość prędkości, gdzie: • V prędkość wody w przekroju • g przyspieszenie ziemskie • Najpierw liczymy napełnienie dla poszczególnych przekrojów. Następnie pole przekroju poprzecznego F [m2] i obwód zwilżony O [m]. W naszym przypadku koryto jest prostokątne, więc pole to szerokość koryta b [m] oraz napełnienie w danym przekroju. Następnie liczymy pole średnie z obu przekrojów Fśr [m2] • Obwód zwilżony O policzymy ze wzoru O = 2· Δh + b ,gdzie: • b – szerokość koryta [m], • Δh – napełnienie średnie [m] ( jest to różnica między napełnieniem w przekroju 2-2, a 8-8).
Obliczenia Tabela 2
Obliczenia • Gdy znamy już pola przekrojów (tabela 2) oraz mamy dane przepływy (tabela 1) możemy wyliczyć prędkość dla każdego przekroju v [m/s], która będzie nam potrzebna do wyznaczenia wysokości prędkości v2/2g. • Wysokość prędkości • Nachylenie linii energii Ie [ -] które liczymy ze wzoru gdzie: Δh – różnica napełnień [m], L – odległość między przekrojami [m] • Rh – promień hydrauliczny Fśr/O [m] (dane z tabeli 2)
Do naszych obliczeń niezbędny będzie współczynnik szorstkości dna, który zmienia się wraz ze wzrostem przepływu. Dlatego odczytujemy go z krzywej. n=0,0325 dla Q=0,011 [m3/s] n=0,0275 dla Q=0,028 [m3/s] n=0,026 dla Q=0,043 [m3/s] Ekstrapolujemy krzywą
Obliczenia Mając już dane: współczynnik szorstkości dla konkretnych przepływów, oraz promień hydrauliczny jesteśmy wstanie wyliczyć wartość współczynnika C.
Obliczenia • Mając już wyliczone wartości współczynnika C, oraz promień hydrauliczny i spadek linii energii możemy policzyć przepływy średnie z równania Chezy.
Obliczenia – tabela pomiarów • Wyniki pomiarów dla drugiego położenia koryta zestawiono w tabeli nr 2
Obliczenia • Z racji tego że koryto jest nachylone pod przeciwnym spadkiem I3 = 0,0084, do obliczenia rzędnych linii energii w przekroju 2-2 do wysokości prędkości i napełnienia musimy dodać wartości nachylenia koryta.
Obliczenia Tabela 2
Obliczenia Dalej w obliczeniach postępujemy tak samo jak przy obliczeniach dla spadku I4 = 0,000.
Obliczenia Mając już dane: współczynnik szorstkości dla konkretnych przepływów, oraz promień hydrauliczny jesteśmy wstanie wyliczyć wartość współczynnika C. Wartości współczynników n przyjmujemy takie jak dla obliczeń wyżej.
Obliczenia • Mając już wyliczone wartości współczynnika C, oraz promień hydrauliczny i spadek linii energii możemy policzyć przepływy średnie z równania Chezy.
Obliczenia – tabela pomiarów • Wyniki pomiarów dla drugiego położenia koryta zestawiono w tabeli nr 3
Obliczenia Tabela 2
Obliczenia • Z racji tego że koryto jest nachylone pod przeciwnym spadkiem I3 = 0,0084, do obliczenia rzędnych linii energii w przekroju 8-8 do wysokości prędkości i napełnienia musimy dodać wartości nachylenia koryta. Napełnienie w 8-8 + wysokość prędkości + nachylenie koryta = wysokość linii energii w przekroju 8-8
Obliczenia Tok obliczeniowy dla spadku I5 jest identyczny jak obliczenia dla i3 i I4 z tą różnicą, że jest to spadek normalny, czyli żeby obliczyć wysokość linii energii w przekroju 8-8 należy do napełnienia i wysokości prędkości dodać nachylenie koryta.
Obliczenia Mając już dane: współczynnik szorstkości dla konkretnych przepływów, oraz promień hydrauliczny jesteśmy wstanie wyliczyć wartość współczynnika C. Wartości współczynników n przyjmujemy takie jak dla obliczeń wyżej.
Obliczenia • Mając już wyliczone wartości współczynnika C, oraz promień hydrauliczny i spadek linii energii możemy policzyć przepływy średnie z równania Chezy.
Literatura • A. Jarosz, 1998, Hydraulika wydanie II • Sobota J., Hydraulika,