1 / 12

Visual Pathways

Visual Pathways. visual hemifields project contralaterally exception: bilateral representation of fovea! Optic nerve splits at optic chiasm about 90 % of fibers project to cortex via LGN about 10 % project through superior colliculus and pulvinar but that’s still a lot of fibers! .

calais
Download Presentation

Visual Pathways

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Visual Pathways • visual hemifields project contralaterally • exception: bilateral representation of fovea! • Optic nerve splits at optic chiasm • about 90 % of fibers project to cortex via LGN • about 10 % project through superior colliculus and pulvinar • but that’s still a lot of fibers! Note: this will be important when we talk about visuospatial attention

  2. Visual Pathways • Lateral Geniculate Nucleus maintains segregation: • of M and P cells (mango and parvo) • of left and right eyes P cells project to layers 3 - 6 M cells project to layers 1 and 2

  3. Visual Pathways • Primary visual cortex receives input from LGN • also known as “striate” because it appears striped when labeled with some dyes • also known as V1 • also known as Brodmann Area 17

  4. Visual Pathways • Primary cortex maintains distinct pathways – functional segregation • M and P pathways synapse in different layers W. W. Norton

  5. The Role of “Extrastriate” Areas • Different visual cortex regions contain cells with different tuning properties

  6. The Role of “Extrastriate” Areas • Consider two plausible models: • System is hierarchical: • each area performs some elaboration on the input it is given and then passes on that elaboration as input to the next “higher” area • System is analytic and parallel: • different areas elaborate on different features of the input

  7. The Role of “Extrastriate” Areas • Functional imaging (PET) investigations of motion and colour selective visual cortical areas • Zeki et al. • Subtractive Logic • stimulus alternates between two scenes that differ only in the feature of interest (i.e. colour, motion, etc.)

  8. The Role of “Extrastriate” Areas • Identifying colour sensitive regions Subtract Voxel intensities during these scans… …from voxel intensities during these scans …etc. Time ->

  9. The Role of “Extrastriate” Areas • result • voxels are identified that are preferentially selective for colour • these tend to cluster in anterior/inferior occipital lobe

  10. The Role of “Extrastriate” Areas • similar logic was used to find motion-selective areas Subtract Voxel intensities during these scans… …from voxel intensities during these scans …etc. STATIONARY STATIONARY MOVING MOVING Time ->

  11. The Role of “Extrastriate” Areas • result • voxels are identified that are preferentially selective for motion • these tend to cluster in superior/dorsal occipital lobe near TemporoParietal Junction • Akin to Human V5

  12. The Role of “Extrastriate” Areas • Thus PET studies doubly-dissociate colour and motion sensitive regions

More Related