100 likes | 239 Views
Shift Theorem (2-D CWT vs QWT). +1. +1. +j. -j. +1. +1. +j. -j. +1. -1. -j. -j. -1. +1. +j. +j. 2-D Hilbert Transform (wavelet). H x. H y. H y. +j. +1. -j. +1. +j. +1. -j. +1. H x. +1. -j. +1. +j. +1. +j. +1. -j. +1. -j. +1. +j. -j. +1. +1. +j.
E N D
+1 +1 +j -j +1 +1 +j -j +1 -1 -j -j -1 +1 +j +j 2-D Hilbert Transform (wavelet) Hx Hy Hy +j +1 -j +1 +j +1 -j +1 Hx
+1 -j +1 +j +1 +j +1 -j +1 -j +1 +j -j +1 +1 +j 2-D complex wavelet • 2-D CWT basis functions 45 degree -45 degree
Complex Wavelets 2-D CWT [Kingsbury,Selesnick,...] • Other subbands for LH and HL (equation) • Six directional subbands (15,45,75 degrees)
Challenge in Coherent Processing – phase wrap-around y x QFT phase where
QWT of real signals • QFT Plancharel Theorem: real window where • QFT inner product • Proof uses QFT convolution Theorem
v LH subband HH subband HL subband u QWT as Local QFT Analysis • For quaternion basis function : quaternion bases where • Single-quadrant QFT • inner product
QWT Edge response v QWT basis • Edge QFT: u QFT spectrum of edge • QFT inner product with QWT bases • Spectral center:
QWT Phase for Edges • Behavior of third phase angle: • denotes energy ratio between positive and leakage quadrant • Frequency leakage / aliasing • Shift theorem unaffected v positive quadrant S1 u leakage quadrant leakage
QWT Third Phase • Behavior of third phase angle • Mixing of signal orientations • Texture analysis