620 likes | 833 Views
Obrana proti extracelulárním patogenům. Obrana proti extracelulárním baktériím a jednobuněčným parazitům. gram-negativní, gram-pozitivní koky, bacily; jednobuněční parazité k jejich eliminaci je nezbytná opsonizace (C3b, lektiny, protilátky...)
E N D
Obrana proti extracelulárním baktériím a jednobuněčným parazitům • gram-negativní, gram-pozitivní koky, bacily; jednobuněční parazité • k jejich eliminaci je nezbytná opsonizace (C3b, lektiny, protilátky...) • neutrofilní granulocyty jsou do místa infekce lákány chemotakticky (C5a, C3a a chemotaktické produkty bakterií) • pohlcené bakterie jsou likvidovány mikrobicidními systémy (produkty NADP-H oxidázy, hydrolytické enzymy a baktericidní látky v lysozomech) • produkce prozánětlivých cytokinů fagocyty (IL-1, IL-6, TNF), které indukují zvýšení teploty, metabolickou odpověď organismu a syntézu proteinů akutní fáze
v pozdějších fázích infekce jsou stimulovány antigenně specifické mechanismy • plazmatické buňky produkují nejprve IgM, po izotypovém přesmyku produkují IgG nebo IgA (opsonizace) • sIgA brání před infekcemi střevními a respiračními bakteriemi • bakterie s polysacharidovým pouzdrem mohou vyvolat T-independentní produkci protilátek IgM (po navázání na bakterii aktivují klasickou cestu komplementu) • po infekci přetrvávají IgG, IgA (protektivní účinek) a paměťové T a B lymfocyty
v obraně proti bakteriálním toxinům se uplatňují neutralizační protilátky (Clostridium tetani a botulinum...) • "nepřímé toxiny"- bakteriální lipopolysacharid (LPS) stimuluje velké množství monocytů k uvolnění TNF, který může vyvolat septický šok • infekcemi extracelulárními bakteriemi jsou ohroženi především jedinci s poruchami funkce fagocytů, komplementu a tvorby protilátek
Obrana proti intracelulárním bakteriím, plísním a jednobuněčným parazitům • intracelulární parazitismus je dán schopností mikroorganismů uniknout mikrobicidním mechanismům fagocytů • mykobakterie, některé kvasinky a plísně • makrofágy, které je pohltily produkují IL-12 → diferenciace TH1, které produkují IFNg a membránový TNF→ aktivace makrofágů a indukce iNOS
plazmatické buňky pod vlivem IFNgprodukují IgG; imunokomplexy obsahující IgG se váží na Fc receptory makrofágů a tím je stimulují • v obraně proti intacelulárním parazitům, kteří unikají z fagolysozómu se uplatňují TC lymfocyty • infekcemi intracelulárními mikroorganismy jsou ohroženi jedinci s některými poruchami funkcí fagocytů a s defekty T lymfocytů
Obrana proti virům • interferony - v infikovaných bb. je indukována produkce IFNa a IFNb(brání replikaci viru a v neinfikovaných bb. navozují tzv. antivirový stav) • NK buňky - ADCC (Antibody-dependent cell-mediated cytotoxicity) = cytotoxická reakce závislá na protilátkách; rozpozná-li NK lymfocyt buňku opsonizovanou IgG pomocí svých stimulačních Fc receptorů CD16 dojde k aktivaci cytotoxických mechanismů (degranulaci) • infikované makrofágy produkují IL-12 (silný aktivátor NK bb.)
v obraně proti cytopatickým virům se nejvíce uplatňují protilátky • sIgA na sliznicích blokují adhezi virů (obrana proti respiračním virům a enterovirům) • neutralizační protilátky IgG nebo IgM aktivují klasickou cestu komplementu, který je schopný některé viry lyzovat • IgA a IgG vzniklé při virové infekci mají preventivní efekt při sekundární infekci
efektorové TClymfocyty ničí infikované buňky a produkují cytokiny, které inhibují replikaci virů • některé viry se po infekci integrují do hostitelského genomu, kde perzistují po léta (varicella zoster, EBV, papilomaviry) • těmito infekcemi jsou ohroženi jedinci s imunodeficity lymfocytů T a s kombinovanými poruchami imunity • zvýšená náchylnost k herpetickým infekcím u jedinců s dysfunkcí NK bb.
Obrana proti mnohobuněčným parazitům • kontakt mastocytů, bazofilů a eosinofilů s antigeny parazita • stimulace TH2 pod vlivem IL-4 (mastocyty a další APC stimulované parazitem) • TH2 stimulují B lymfocyty s BCR specifickým pro parazitární antigeny • pod vlivem IL-4 izotypový přesmyk v IgE
IgE se váží na FceRI mastocytů a bazofilů ("antigenně specifické receptory") • navázání multivalentního antigenu ( mnohobuněčného parazita) pomocí IgE na vysokoafinní Fc receptor pro IgE (FcRI) • agregace několika molekul FcRI →aktivace mastocytu: • iniciace degranulace mastocytu ( fúze cytoplazmatických granulí s povrchovou membránou a uvolnění jejich obsahu) – uvolnění histaminu… • aktivace metabolismu kyseliny arachidonové (leukotrien C4, prostaglandin PGD2) - amplifikace zánětlivé reakce • zahájení produkce cytokinů (TNF, TGF, IL-4,5,6…) mastocytem
Histamin způsobuje vasodilataci, zvýšení vaskulární permeability, erytém, edém, svědění, kontrakci hladké svaloviny bronchů, zvýšení peristaltiky střev, zvýšení sekrece hlenu slizničními žlázkami v respiračním traktu a GITu (napomáhá eliminaci parazita)
v pozdějších stádiích se aktivují TH1 a jsou produkovány protilátky dalších tříd • eosinofily fagocytují komplexy parazitárních částic s IgE prostřednictvím svých receptorů pro IgE • eosinofily proti parazitům používají extracelulární baktericidní látky uvolněné z granulí (eosinofilní katoinický protein, proteázy)
Maligní transformace • porucha regulace buněčného dělení a regulace "sociálního" chování buněk • nekontrolovatelná proliferace, diseminace do jiných tkání • mutace v protoonkogenech a antionkogenech Nádorové buňky • neomezený růst (ztráta kontaktní inhibice) • růst i bez stimulace růstovými faktory • nesmrtelnost (nádorové buňky se nedělí jen po omezený počet generací jako normální buňky) • často změněný počet chromosomů i časté chromosomální přestavby • TSA ...
Nádorové antigeny a) Antigeny specifické pro nádory (TSA) • Komplexy MHC gp I s abnormálními fragmenty buněčných proteinů - chemicky indukované nádory - leukémie s chromozomálními translokacemi • Komplexy MHC gp s fragmenty proteinů onkogenních virů - nádory vyvolané viry (EBV, SV40, polyomavirus) • Abnormální formy glykoproteinů - sialylace povrchových proteinů nádorových buněk • Idiotypy myelomů a lymfomů - klonotypické TCR a BCR
b) Antigeny asociované s nádory (TAA) • nachází se i na normálních buňkách • odlišnosti v kvantitě, časové či místní expresi • pomocné diagnostické markery 1) Onkofetální antigeny • na normálních embryonálních bb. a některých nádorových bb. • -fetoprotein (AFP) - hepatom • karcinoembrionální antigen (CEA) - karcinom tlustého střeva 2) Melanomové antigeny • MAGE-1, MELAN-A
3) Antigen HER2/neu • receptor růstového faktoru epiteliálních bb. • karcinom mléčné žlázy 4) EPCAM • adhezivní molekula epiteliálních bb. • metastázy karcinomů 5) Diferenciační antigeny leukemických bb. • přítomny na normálních bb. vývojové řady leukocytů • CALLA -akutní lymfoblastické leukémie, (CD10 pre-B bb.)
Protinádorové imunitní mechanismy Imunitní dozor • nádorové buňky běžně vznikají ve tkáních a jsou eliminovány T lymfocyty (pravděpodobně nesprávná hypotéza) Obranná imunitní reakce • nádorové bb. jsou slabě imunogenní • vzniká, jsou-li nádorové antigeny prezentovány T lymfocytům dendritickými buňkami aktivovanými v zánětlivém prostředí • jsou-li nádorové buňky rozpoznány, mohou se na obraně podílet nespecifické mechanismy (neutrofilní granulocyty, makrofágy, NK bb.) i antigenně specifické mechanismy (protilátky aktivující komplement či zprostředkující ADCC, TH1 a TC)
s nádorem asociované antigeny jsou zpracovány APC a rozpoznány T lymfocyty v komplexu s HLA I. a II. třídy za poskytnutí kostimulačních signálů • převaha TH1 (IFN,TNF) • specifická buňkami zprostředkovaná cytotoxická reaktivita - TC • jsou aktivovány i TH2 → podpora B lymfocytů → nádorově specifické protilátky (podílejí se na ADCC) • nádorové bb. jsou cytotoxicky ničeny NK buňkami (ADCC) působením perforinů nebo indukcí apoptózy (FasL)
Mechanismy odolnosti nádorů vůči imunitnímu systému • vysoká variabilita nádorových bb. • nízká exprese nádorových antigenů • sialylace • nádorové bb. neposkytují kostimulační signály → anergie T lymfocytů • některé protinádorové látky mají stimulační účinky • produkce faktorů inaktivujících T lymfocyty • exprese FasL → apoptóza T lymfocytů • inhibice funkce či životnosti dendritických bb. (NO, IL-10, TGF-)
Transplantace= přenos tkáně či orgánu● autologní - dárce = příjemce●syngenní - geneticky identický dárce s příjemcem (identická dvojčata)● alogenní - geneticky neidentický dárce stejného živočišného druhu● xenogenní - dárce jiného živočišného druhu● implantace - umělé náhrady tkání
Alogenní transplantace● rozdíly dárce-příjemce v MHC gp a vedlejších histokompatibilních Ag●aloreaktivita T lymfocytů - riziko rejekce a reakce štěpu proti hostiteli (GvH) ●přímé rozpoznání aloantigenů - T lymfocyty příjemce rozpoznávají odlišné MHC gp a non-MHC molekuly na buňkách dárce ●nepřímé rozpoznání aloantigenů – APC pohltí rozdílné MHC gp z buněk dárce a prezentují jejich fragmenty T lymfocytům ● CD8+ T lymfocyty rozeznávají MHC gp I● CD4+ T lymfocyty rozeznávají MHCgp II
Předtransplantační vyšetření●Kompatibilita v ABO systému- riziko hyperakutní nebo akcelerované rejekce (= tvorba Ab proti A nebo B Ag na cévním endotelu štěpu)●HLA typizace (určování alelických forem MHC gp) fenotypizací nebo genotypizací pomocí PCR ●Cross match- lymfocytotoxický test - vyšetření preformovaných Ab (po krevních transfúzích, transplantacích, opakovaných porodech) ●Směsný lymfocytární test - vyšetření aloreaktivity T lymfocytů, sleduje se reaktivita lymfocytů na alogenní HLA
HLA typizace= určení HLA antigenů na povrchu lymfocytůProvádí se při předtransplantačním vyšetření a při určení paternity 1) Sérologická typizace • mikrolymfocytotoxický test • allospecifická séra ( získaná od vícenásobných rodiček do 6 týdnů po porodu, získaná vakcinací dobrovolníků, nebo komerčně připravené sety typizačních sér (monoklonální protilátky)) • princip - inkubace lymfocytů s typizačními séry za přítomnosti králičího komplementu, poté je přidáno vitální barvivo, které obarví mrtvé buňky - buňky nesoucí určité HLA jsou usmrceny cytotoxickými Ab proti tomuto Ag, procento mrtvých buněk je mírou toxicity séra (síly a titru antileukocytárních protilátek) • za pozitivní reakci se považuje více než 10% mrtvých bb. • (sérologickou typizaci lze provádět i pomocí průtokové cytometrie)
2) Molekulárně genetické metody 2a) PCR-SSP • = polymerázová řetězová reakce se sekvenčními specifickými primery • extrahovaná DNA slouží jako substrát v sadě PCR reakcí • každá PCR reakce obsahuje primerový pár specifický pro určitou alelu (resp. skupinu alel) • pozitivní a negativní reakce se hodnotí elektroforézou • každá kombinace alel má svůj specifický elektroforetický obraz
2b) PCR-SSO • = PCR reakce se sekvenčně specifickými oligonukleotidy • namnoží se hypervariabilní úseky genů kódujících HLA • hybridizace s enzymaticky nebo radioaktivně značenými DNA sondami specifickými pro jednotlivé alely 2c) PCR- SBT • = sequencing based typing; sekvenování • nejpřesnější metodika HLA typizace • získáme přesnou sekvenci nukleotidů, kterou porovnáme s databází známých sekvencí HLA alel
Cross-match test● průkaz preformovaných protilátek●sérum příjemce + lymfocyty dárce + králičí komplement → jsou-li v séru příjemce cytotoxické Ab proti dárcovským HLA Ag (tzv. aloprotilátky = Ab aktivující komplement) → lýza dárcových lymfocytů. Vizualizace průnikem barviva do lyzovaných bb.● pozitivita testu = přítomnost preformovaných Ab → riziko hyperakutní rejekce! → kontraindikace transplantace
Směsná lymfocytární reakce (MLR)● průkaz aloreaktivity T lymfocytů● smísí se lymfocyty dárce a příjemce → T lymfocyty se po rozpoznání alogenních MHC gp aktivují a proliferují ● hodnotí se množství zabudovaných radioaktivních nukleotidů v DNAJednosměrná MLR● stanovení reaktivity T lymfocytů příjemce vůči buňkám dárce● buňky dárce se ozáří či ošetří cytostatikem, tím ztratí schopnost dělení
Imunologicky privilegovaná místa a tkáně • Transpalntace některých tkání nevede k indukci alogenní reaktivity • minimální obsah leukocytů • mechanismy bránící rozvoji poškozujícího zánětu • Evolučně významné, ochrana důležitých orgánů (mozek, oko, gonády) • Faktory chránící imunologicky privilegovaná místa • izolace od imunitního systému • preferenční rozvoj TH2 odpovědi, potlačení TH1 • exprese FasL • produkce TGFb
Rejekce (odhojení, odvržení štěpu)Faktory: ●Genetický rozdíl mezi dárcem a příjemcem, zejména v genech kódujících MHC gp (HLA) ● Druh tkáně/orgánu - nejsilnější reakce proti vaskularizovaným tkáním obsahujícím hodně APC (kůže)● Aktivita imunitního systému příjemce - imunodeficitní příjemce má menší odhojovací reakce; imunosupresivní léčba po transplantaci - potlačení rejekce● Stav transplantovaného orgánu - délka ischémie, způsob uchování, traumatizace orgánu při odběru
Hyperakutní rejekce●minuty až hodiny po transplantaci●imunitní reakce protilátkového typumechanismus: ●v krvi příjemce jsou přítomny již před transplantací preformovanénebo přirozené Ab (IgM proti sacharidovým Ag) → Ab+Ag štěpu (MHC gp nebo Agg endotélií) → štěp poškozen aktivovaným komplementem (lýza bb.)●na endotelu štěpu: aktivace koagulačních faktorů a destiček, vznik trombů, akumulace neutrofilních granulocytůprevence:●negat. cross match před transplantací, ABO kompatibilita
Akcelerovaná rejekce●3 - 5 dnů po transplantaci●vyvolána protilátkami které neaktivují komplement ● cytotoxická a zánětlivá reakce spuštěna vazbou protilátky na Fc-receptory fagocytů a NK buněkprevence:● negat. cross match před transplantací, ABO kompatibilita
Akutní rejekce●dny až týdny po transplantaci nebo při přerušení imunosupresivní léčby●buňkami zprostředkovaná imunitní reakcemechanismus: ●reakceTH1 a TC buněk příjemce proti Ag tkáně štěpu● infiltrace okolí malých cév lymfocyty, mononukleáry, granulocyty → destrukce tkáně transplantátu
Chronická rejekce●od 2. měsíce po transplantaci●nejčastější příčina selhání štěpumechanismus není zcela objasněn:● neimunologické faktory (ischémie tkání) a TH2 reakce s produkcí aloprotilátek, patogenetická úloha cytokinů a růstových faktorů (TH3 - TGF β)● nahrazování funkční tkáně vazivem, poškození endotelu → porucha prokrvení štěpu → postupná ztráta jeho funkce● dominující nález: poškození cév