270 likes | 484 Views
Halo Collimation of Proton and Ion Beams in FAIR Synchrotron SIS 100. I. Strasik 1 , I. Prokhorov 1,2 and O. Boine-Frankenheim 1,2 1 GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany 2 Technical University Darmstadt, Germany. Introduction.
E N D
Halo Collimation of Proton and Ion Beams in FAIR Synchrotron SIS 100 I. Strasik1, I. Prokhorov1,2 and O. Boine-Frankenheim1,2 1GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany 2Technical University Darmstadt, Germany
Introduction • FAIR – Facility for Antiproton and Ion Research at GSI • Synchrotron SIS 100 (fixed target) • Beams - protons (antiproton production) - fully-stripped ions (e.g. ) - partially-stripped ions (e.g. ) • Lattice - circumference ~ 1 km - hexagonal shape (six superperiods) - quadrupole doublet structure - superconducting magnets one superperiod 1
SIS 100 synchrotron • Beam parameters • Total beam energy 2
Need for the halo collimation in SIS 100 • Protons and light ions • Activation ("hands-on" maintenance limit) 1 W/m (1 GeV protons), 5 W/m (1 GeV/u uranium ions) • Quenches [Ref] I. Strasik et al., Physical Review ST AB 13, (2010) • Heavy ions • Vacuum degradation due to desorption process • Radiation damage [Ref] E. Mahner, Physical Review ST AB 11, (2008) Uranium beam experiments, GSI 3
Cryocatchers in SIS 100 • Interaction with residual gas: U28+→ U29+. • Cryocatchers - a combined collimation/pumping system developed to intercept heavy ions which lost electrons due to interaction with residual gas. • Minimize the desorbed gas entering the beam pipe. • Important also for the halo collimation prototype cryocatchers Courtesy Lars Bozyk [Ref] L. Bozyk et al., Proceedings of the IPAC’12, p. 3237. 4
Cryocatchers in SIS 100 Particle tracking: Stripped ions distribution: Courtesy Lars Bozyk [Ref] L. Bozyk et al., Proceedings of the IPAC’12, p. 3237. 5
Two-stage betatron collimation system • Primary collimator (thin foil) – scattering of the halo particles • Secondary collimators (bulky blocks) – absorption of the scattered particles Particles have small impact parameter on the primary collimator. The impact parameter at the secondary collimator is enlarged due to scattering → reduced leakage of the particles. [Ref] M. Seidel, DESY Report, 94-103, (1994). [Ref] T. Trenkler and J.B. Jeanneret, Particle Accelerators 50, 287 (1995). [Ref] J.B. Jeanneret, Phys. Rev. ST Accel. Beams 1, 081001 (1998). [Ref] K. Yamamoto, Phys. Rev. ST Accel. Beams 11, 123501 (2008). [Ref] N. Mokhov et al., Journal of Instrum. 6, T08005 (2011). 6
Collimation of protons and fully-stripped ions SIS 100, Sector 1 - straight section, cell 3 and 4 Location of the collimation system in SIS 100 Parameters of the collimators rectangular aperture 7
Lattice and beam parameters Ion operation (fast extraction) 8
Efficiency of the proton beam collimation Simulation tools Beam-material interaction: FLUKA Statistics: 700 000 particles Particle tracking: MAD-X Efficiency:~ 99 % 9
Importance of the impact parameter 1 mm IP = 10 mm IP = 1 mm IP = 0.1 mm IP = 0.01 mm IP = 0.5 mm 10
Impact parameter and beam energy Dependence of the collimation efficiency on the impact parameter and beam energy. 11
Collimation of fully-strippedions • Two-stage collimation system utilize also for fully-stripped ions Study of the following processes for various ion species • Reference quantity - magnetic rigidity Injection and extraction energy • Scattering in the primary collimator Molière theory (multiple Coulomb scattering), ATIMA code, FLUKA code • Energy (momentum) losses in the primary collimator Bethe formula, ATIMA code, FLUKA code • Inelastic nuclear interactions in the primary collimator Sihver, Tripathi, Kox, Shen formulae, FLUKA code • Collimation efficiency Dependence on the ion species 12
Magnetic rigidity Reference quantity →magnetic rigidity Magnetic rigidity →injection and extraction energy of the beam 13
Scattering in the primary collimator Molière theory of multiple Coulomb scattering [Ref] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012). ATIMA code (1 mm, tungsten) ATIMA vs FLUKA 14
Momentum losses in the primary collimator Bethe formula [Ref] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012). ATIMA code (1 mm, tungsten) ATIMA vs FLUKA 15
Inelastic nuclear interactions Cross section for inelastic nuclear interaction - Kox formula (E > 10 MeV/u) [Ref] Kox et al. Phys. Rev. C35, 1678 (1987). - Shen formula (E > 10 MeV/u) [Ref] Shen et al. Nucl. Phys. A491, 130 (1989). - Sihver formula (E > 100 MeV/u) [Ref] L. Sihver et al., Phys. Rev. C47, 1225 (1993). - Tripathi formula (E > 10 MeV/u) [Ref] R. Tripathi et al., NIMB117, 347 (1996). Tripathi (1 mm, tungsten) Tripathi vs FLUKA (Br = 18Tm) Discrepancy for heavy ions - EMD 16
Choice of the material for the primary collimator 40Ar ions High-Z materials are preferable. 17
Efficiency of the ion beams collimation Simulation tools Beam-material interaction: ATIMA, FLUKA Statistics: 100 000 particles Particle tracking: MAD-X 18
Impact parameter and imperfections of the lattice Dependence of the collimation efficiency on the impact parameter and COD. 1 mm ± 30 %magnet misalignment 19
Collimation of partially-stripped ions Intermediate charge-state ions will be accelerated in SIS 100. [Ref] FAIR - Baseline Technical Report, GSI Darmstadt, (2006). Colimation concept - Stripping foil: - Deflection by a beam optical element 20
Collimation of partially-stripped ions Slow extraction area in SIS 100 SIS 100 / Sector 5 / Cell 2 Cell 3 stripping foil warm quadrupoles beam direction The stripping foil for the halo collimation is placed in the slow extraction area in SIS 100 Slow extraction area - two warm quadrupoles [Ref] A. Smolyakov at al, EPAC2008, 3602 (2008). 21
Charge state distribution after stripping Electron capture and electron loss equilibrium charge-state distribution code GLOBAL [Ref] C. Scheidenberger et al., NIMB 142 (1998) 441. injection energies high energies (2 GeV/u) fully-ionized state Stripping foil: 500 μm thick, titanium Medium-Z materials (Al – Cu) → optimal for efficient stripping for wide range of projectiles and beam energies 22
Particle tracking of stripped ions Horizontal Vertical 23
Charge state distribution after stripping Horizontal Vertical 24
Conclusion • Efficiency of the proton beam collimation: ~ 99%. • Efficiency of the ion beam collimation: ~ 99% for fully-stripped ions < 20Ne. • Efficiency of the ion beam collimation + cryocatchers: ~ 99% for fully-stripped ions < 132Xe. • Efficiency of the ion beam collimation + cryocatchers: almost 90% for 238U. • The collimation concept for the partially-stripped ions is based on the stripping of their electrons • The stripped ions are then deflected using two warm quadrupoles. 25