1 / 38

GEOSTATYSTYKA Wykład dla III roku Geografii specjalność - geoinformacja

GEOSTATYSTYKA Wykład dla III roku Geografii specjalność - geoinformacja. Alfred Stach Instytut Paleogeografii i Geoekologii Wydział Nauk Geograficznych i Geologicznych UAM. Analiza struktury przestrzennej dwóch zmiennych. z i ( u  + h ). „głowa” head. „ogon” tail. h.

cathy
Download Presentation

GEOSTATYSTYKA Wykład dla III roku Geografii specjalność - geoinformacja

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GEOSTATYSTYKAWykład dla III roku Geografiispecjalność - geoinformacja Alfred Stach Instytut Paleogeografii i Geoekologii Wydział Nauk Geograficznych i Geologicznych UAM

  2. Analiza struktury przestrzennej dwóch zmiennych zi(u+h) „głowa” head „ogon” tail h Wartość cechy w punktach u i u + h dotyczy jednej zmiennej zi. zj(u+h) zi(u) „głowa” head „ogon” tail h Wartość cechy w punktach u i u + h dotyczy dwóch zmiennych zi i zj. zi(u)

  3. Wykresy rozrzutu dwóch zmiennych z przesunięciem (crossh-scattergram) Dane cech b1_03b i b3n_03b ze zbioru Horbye3.dat Dane z punktów odległych od siebie o 0-22,5m Średnia odległość 17,645m Ilość par punktów: 74 kowariancja: 62,033 korelacja: 0,5063

  4. Wykresy rozrzutu dwóch zmiennych z przesunięciem (crossh-scattergram) Dane cech b1_03b i b3n_03b ze zbioru Horbye3.dat Dane z punktów odległych od siebie o 22,5-67,5m Średnia odległość 51,381m Ilość par punktów: 640 kowariancja: 63,051 korelacja: 0,4165

  5. Wykresy rozrzutu dwóch zmiennych z przesunięciem (crossh-scattergram) Dane cech b1_03b i b3n_03b ze zbioru Horbye3.dat Dane z punktów odległych od siebie o 67,5-112,5m Średnia odległość 92,41m Ilość par punktów: 1048 kowariancja: 49,056 korelacja: 0,29181

  6. Wykresy rozrzutu dwóch zmiennych z przesunięciem (crossh-scattergram) Dane cech b1_03b i b3n_03b ze zbioru Horbye3.dat Dane z punktów odległych od siebie o 112,5-157,5m Średnia odległość 136,27m Ilość par punktów: 1472 kowariancja: 36,042 korelacja: 0,2139

  7. Wykresy rozrzutu dwóch zmiennych z przesunięciem (crossh-scattergram) Dane cech b1_03b i b3n_03b ze zbioru Horbye3.dat Dane z punktów odległych od siebie o 157,5-202.5m Średnia odległość 181,33m Ilość par punktów: 1930 kowariancja: 21,321 korelacja: 0,1293

  8. Wykresy rozrzutu dwóch zmiennych z przesunięciem (crossh-scattergram) h (m) – ij 0 – 0,807 17,6 – 0,506 51,4 – 0,416 92,4 – 0,292 136,3 – 0,214 181,3 – 0,129

  9. Funkcja kros kowariancji Kowariancja między wartościami cech zi i zj odległymi o wektor h jest obliczona według wzoru: gdzie: N(h) to ilość par punktów odległych o wektor h, a mi-h i mj+hto średnie wartości zi „ogona”, i wartości zj „głowy”.

  10. Powierzchnia kros kowariancji zmiennych b1_03b i b3n_03b

  11. Funkcja kros kowariancji zmiennych b1_03b i b3n_03b Uporządkowany zbiór kroskowariancji Cij(h1), Cij(h2), … jest zwany eksperymentalną funkcją kros kowariancji

  12. Kros korelogram Wariancja wartości „ogona” (zi) Wariancja wartości „głowy” (zj)

  13. Powierzchnia kros korelogramu zmiennych b1_03b i b3n_03b

  14. Kros korelogramy zmiennych b1_03bi b3n_03b ij=0,910 h=20,7m N=7

  15. Efekt przesunięcia (lag effect) • Kros kowariancja obliczana w przeciwnych kierunkach jest zazwyczaj odmienna: Cij(h)  Cij(-h) • Znacząca różnica pomiędzy Cij(h) i Cij(-h) może oznaczać, że jedna wartość jednej cechy zmienia się w przestrzeni z pewnym opóźnieniem w stosunku do zmian drugiej cechy. Zjawisko to nazywane jest efektem przesunięcia. • Jeśli brak jest klarownej fizycznej interpretacji tego zjawiska, lepiej je zignorować, gdyż może być skutkiem przypadkowej fluktuacji związanej z małą ilością par danych z których wyliczono kowariancję.

  16. Efekt przesunięcia - przykład Badamy skażenie gleb wokół zakładu przemysłowego. Jest ono związane z emisjami gazów i pyłów z komina zakładu. Składnik A zanieczyszczeń związany jest z emisjami pyłowymi, a składnik B – gazowymi. Składnik A będzie zatem „wypadał” z chmury zanieczyszczeń szybciej niż składnik B. Zmiany przestrzenne obu składników będą miały podobną strukturę przestrzenną (bo są efektem tego samego zjawiska), ale z przesunięciem.

  17. Czy nasze zmienne b1_03b i b3n_03b wykazują efekt przesunięcia?

  18. Rozrzut gradientów zmian par punktów dwóch zmiennych • Kros kowariancja (kros korelacja) określa jak wygląda relacja wartości cechy zi w jednej lokalizacji w stosunku do wartości innej cechy zj w lokalizacji odległej o wektor h. • Zamiast porównywać parę danych (zi(u), zj(u+h)) możemy rozważyć porównanie pary przyrostów na dystansie h([zi(u), zi(u+h)], [zj(u), zj(u+h)]), które pokazują wspólną zmianę gradientów wartości zi- i zj- przy zmianie położenia o wektor h. • Jeśli obie cechy są skorelowane dodatnio, to przyrost (spadek) wartości zi- od punktu u do punktu u+h będzie związany ze wzrostem (spadkiem) wartości zj-. • A jeśli obie cechy są skorelowane ujemnie, to ….

  19. zi(u+h) „głowa” head „ogon” tail h zj(u+h) „głowa” head zi(u) „ogon” tail h zj(u) Różnice wartości par punktów dwóch cech (h-increments) Analiza wspólnej zmienności cech zi i zj przy przemieszczeniu o dystans h

  20. Wykresy rozrzutu z przesunięciem dla różnic (h-increments scatergrams) Cechy b1_03b i b3n_3b. Kierunek = 130°; tolerancja kierunku = 22,5°; szerokość pasa tolerancji = 100 m; odstęp = 45 m; tolerancja odstępu = 22,5 m h = 21,8 m h = 50,8 m

  21. Wykresy rozrzutu z przesunięciem dla różnic (h-increments scatergrams) Cechy b1_03b i b3n_3b. Kierunek = 130°; tolerancja kierunku = 22,5°; szerokość pasa tolerancji = 100 m; odstęp = 45 m; tolerancja odstępu = 22,5 m h = 90,7 m h = 134,4 m

  22. Wykresy rozrzutu z przesunięciem dla różnic (h-increments scatergrams) Cechy b1_03b i b3n_3b. Kierunek = 130°; tolerancja kierunku = 22,5°; szerokość pasa tolerancji = 100 m; odstęp = 45 m; tolerancja odstępu = 22,5 m h = 181,0 m h = 226,0 m

  23. Kros semiwariogram Kros semiwariogram jest definiowany jako „połowa nie scentralizowanej kowariancji pomiędzy różnicami na dystansie h”. W przeciwieństwie do kros kowariancji i kros korelogramu kros semiwariogram jest symetryczny w stosunku do cech i wektora przesunięcia to jest zamiana ij na ji, oraz (h) na (-h) nie wpływa na jego wartość. Kros semiwariogram nie może zatem pomagać w wykrywaniu efektu „przesunięcia”. Poza tym kros semiwariogram może być obliczany jedynie dla takich lokalizacji, w których zmierzono obie cechy.

  24. Powierzchnia kros semiwariancji zmiennych b1_03b i b3n_03b

  25. Kros semiwariogram zmiennych b1_03b i b3n_03b

  26. Funkcja kodyspersji Uporządkowany zbiór współczynników kodyspersji ij(h1), ij(h2), ... jest zwany eksperymentalną funkcją kodyspersji. Współczynnik kodyspersji można interpretować jako współczynnik korelacji pomiędzy zmianami cech na dystansie h, kiedy wykres rozrzutu rysowany jest w postaci symetrycznej, tj. każda para lokalizacji (u, u+h) pojawia się dwukrotnie, raz jako punkt o współrzędnych ([zi(u), zi(u+h)], [zj(u), zj(u+h)]), a drugi raz jako punkt ([zi(u+h), zi(u)], [zj(u+h), zj(u)]).

  27. Funkcja kodyspersji cechb1_03b i b3n_03b

  28. Funkcja kros kowariancji kodów Tak samo jak w przypadku analizy struktury przestrzennej jednej zmiennej, charakter i siła relacji między dwoma zmiennymi może zależeć o skali natężenia porównywanych cech: niskiej, średniej, czy wysokiej. Często wysokie wartości skorelowanych przestrzennie cech będące efektem tego samego zjawiska mogą wykazywać większe podobieństwo niż średnie i niskie, mające odmienną genezę. Przykładem może być zawartość toksycznych metali ciężkich w glebach. Ich niskie lub średnie stężenia mają najczęściej genezę naturalną, związaną z procesami wietrzeniowymi skał macierzystych. Wysokie koncentracje natomiast są zazwyczaj związane z antropogenicznymi emisjami.

  29. Funkcja kros kowariancji kodów Gdzie: Fi-h(zik) i Fj+h(zjk') to proporcje wartości ogona zi i głowy zj, które nie przekraczają poziomów progowych zik i zjk'. Kros kowariancja jest miarą wspólnej dwu-punktowej skumulowaną frekwencji Fij(h;zik, zjk'), określającej jak często wartości zi i zj oddalone o wektor h są jednocześnie nie większe od określonych wartości progowych (zik, zjk').

  30. Gdzie wariancja wartości kodów ogona i(u;zik) jest równa: Kros korelogram kodów Standaryzowaną postacią kros kowariancji kodów jest kros korelogram kodów:

  31. Niezerowy udział w kros semiwariogramie kodów mają jedynie te pary danych, w których wartości obu cech zi, i zj są po przeciwnych stronach ich wartości progowych (zik,zjk'). Udział pary danych w może być pozytywny (+1) lub negatywny (-1), w zależności od tego czy wartości zi i zj wspólnie rosną (maleją) przy przejściu od u do u + h, lub też zmieniają się w sposób przeciwny. Kros semiwariogram kodów

  32. Strukturę przestrzenną danych kodowanych dwóch cech badać można także w innych przypadkach: • i(u;zk) i i(u;zk') mogą dotyczyć tej samej ciągłej (ilościowej) cechyz, ale dla dwóch różnych wartości progowych zk i zk' • i(u;sk) i i(u;sk') odnoszących się do dwóch różnych kategorii sk i sk' • i(u;zk) i i(u;sk) odnoszących się cechy ilościowej i jakościowej (kategorii)

  33. Standaryzowane kros semiwariogramy bezkierunkowe kodów b1_03b i b3n_03b

  34. Efekt proporcjonalności: relacja między lokalną średnią, a lokalną wariancją Próbka preferencyjna, zmienna b3n_03b Próbka preferencyjna, zmienna b1_03b

  35. Semiwariogramy względne 1 Ogólny semiwariogram względny skaluje wartości semiwariogramu za pomocą funkcji średniej odstępu h Średnia wszystkich wartości danych dla odstępu h, czyli średnia ze średnich dla danych ogona i głowy. Funkcję f można określić na podstawie wykresu rozrzutu lokalnych średnich w stosunku do lokalnych wariancji. Dla rozkładów prawoskośnych funkcję tę zazwyczaj przyjmuje się jak kwadrat średniej odstępu:

  36. Semiwariogramy względne 2 Porównawczy semiwariogram względny skaluje wartości semiwariogramu dla każdej różnicy w parze za pomocą podniesionej do kwadratu średniej wartości ogona i głowy. Miara ta bezpośrednio redukuje wpływ poszczególnych wysokich wartości danych w obliczeniach semiwariogramu. Ze względu na matematyczny charakter (ułamki) zastosowanie semiwariogramów względnych jest ograniczone do danych o wartościach dodatnich

  37. Wpływ preferencyjnego próbkowania na semiwariogram empiryczny b1_03b

  38. Wpływ preferencyjnego próbkowania na semiwariogram empiryczny b1_03b

More Related