240 likes | 252 Views
This study explores methods to increase the stability and synthesis of nitroxides through the use of sterically shielded compounds in the imidazoline, imidazolidine, pyrroline, and pyrrolidine series. Focus is on the reduction consequences, spin probe decay, and low molecular weight antioxidants depletion. Various delivery systems, including liposomes and inclusion complexes, are investigated for maximizing the nitroxide lifetime.
E N D
Syntheses and Redox Properties of Sterically Shielded Nitroxides of Imidazoline, Imidazolidine, Pyrroline and Pyrrolidine Series
2 Nitroxide reduction consequences • Spin probe decay • Low molecular weight antioxidants depletion • Toxicity
3 How to increase the nitroxide lifetime • Delivery systems • Liposomes • Inclusion complexes • Bulky substituents
4 Reduction in the rat blood I.A.Kirilyuk, A.A.Bobko, I.A.Grigor’ev, V.V. Khramtsov, Org.Biomol.Chem., 2004, 2, 1025 Influence of bulky substituents Observed rates of reduction with ascorbate at pH 5.5. [nitroxide] 1 mM, [ascorbic acid] 100 mM L. Marx, R. Chiarelli, T. Guiberteau and A. Rassat, J. Chem. Soc. Perkin Trans. 1, 2000, 1181-1182. 0.027 s-1 0.0009 s-1
5 Syntheses of sterically shielded nitroxides
6 Organometallic Compounds Additions. pH-Sensitive Spin Probes pK 6.60 (37 °C) A. A. Bobko, T. D. Eubank, J. L. Voorhees, O. V. Efimova, I. A. Kirilyuk, S. Petryakov, D. G. Trofimiov, C. B. Marsh, J. L. Zweier, I. A. Grigor’ev, A. Samouilov, and V. V. Khramtsov, Magn. Reson. Med., 2012, 67, 1827-1836. D. A. Komarov, I. Dhimitruka, I. A. Kirilyuk, D. G. Trofimiov, I. A. Grigor’ev, J. L. Zweier, V. V. Khramtsov, Magn. Reson. Med., 2012, 68, 649–655.
7 Organometallic compounds additions. Limitations metallation low reactivity deoxygenation
8 Organometallic compounds additions. Nitroxides with tert-butyl group at α-carbon
9 Organometallic compounds additions. Nitroxides with tert-butyl group at α-carbon
10 Condensations 9% pK = 6.1 kred = 0.04 V. V. Yan’shole, I. A. Kirilyuk, I. A. Grigor’ev, S. V. Morozov, and Yu. P. Tsentalovich, Russian Chemical Bulletin, Vol. 59, No. 1, pp. 66—74.
11 1,3-Dipolar cycloaddition C. Sár, J. Jekő, K. Hideg, Synthesis, 2003, 9, 1367-1372 C. Sár, E. Ősz, J. Jekő, K. Hideg, Synthesis, 2005, 2, 255-259
12 Intramolecular 1,3-dipolar cycloaddition D. A. Morozov, I. A. Kirilyuk, D. A. Komarov, A. Goti, I. Yu. Bagryanskaya, N. V. Kuratieva, I. A. Grigor’ev. J. Org. Chem. 2012, 77 (23), pp. 10688-10698.
13 EPR spectra of pyrrolidine nitroxides 1 mM solutions in H2O+10%DMSO; spectrometer settings: modulation amplitude, 0.5 G; microwave power, 10 mW; time constant, 20 ms; sweep time, 40 s.
14 EPR line widths problem A.A. Bobko, I.A. Kirilyuk, N.P. Gritsan, D.N. Polovyanenko, I.A. Grigor’ev, V.V. Khramtsov, E.G. Bagryanskaya, ApplMagnReson (2010) 39:437–451.
15 Partly deuterated nitroxides R=CH3 (1/3); CD3 (2/3).
16 Paletta, J. T.; Pink, M.; Foley, B.; Rajca, S.; Rajca, A.; Synthesis and Reduction Kinetics of Sterically Shielded PyrrolidineNitroxides. Org. Lett. 2012, Vol.14, No.20, P. 5322-5325.
17 Mechanism of nitroxides reduction with ascorbate A.A.Bobko, I.A.Kirilyuk, I.A.Grigor’ev, J.L.Zweier, V.V.Khramtsov. FreeRadic. Biol. Med., 2007, V. 42, P. 404-412. k = 5*10-3 M-1c-1
18 Rate constants of nitroxides reduction with ascorbate 0.02 0.005
19 Rate constants of reduction with ascorbate, k1, M-1s-1 6.32±0.01 0.044±0.002 5.6±0.2 0.039±0.003 0.063±0.002 0.001 Paletta, J. T.; Pink, M.; Foley, B.; Rajca, S.; Rajca, A.; Synthesis and Reduction Kinetics of Sterically Shielded PyrrolidineNitroxides. Org. Lett. 2012, Vol.14, No.20, P. 5322-5325.
20 Rate constants of imidazolidine nitroxides reduction with ascorbate
21 Correlation between the rate constants of nitroxide reductionwith ascorbate(kAsc) and the coupling constants with 1-(tert-butoxycarbonyl)-ethyl radical (kc)
22 Rate constants of direct and reverse reactions A.A.Bobko, I.A.Kirilyuk, I.A.Grigor’ev, J.L.Zweier, V.V.Khramtsov. FreeRadic. Biol. Med., 2007, V. 42, P. 404-412.
Hydrogen atom exchange 23 NR CPH-15N PСА-15N 0.04 0.02