370 likes | 392 Views
G(r). r – r e is the vibrational coordinate. r e. r – r e . Vibrational Energy Levels Harmonic Oscillator G(v) = ω (v + ½) cm -1. G(r). Equidistantly spaced levels. r . G(r). This is a quite unrealistic curve. r . H + H. G(r). r . H + H Dissociation.
E N D
G(r) r – re is the vibrational coordinate re r – re
Vibrational Energy Levels Harmonic Oscillator G(v) = ω(v + ½) cm-1
G(r) Equidistantly spaced levels r
G(r) This is a quite unrealistic curve r
H + H G(r) r
H + H Dissociation G(r) r
H + H Dissociation Chemical Bond Energies G(r) r
H + H Dissociation Chemical Bond Energies G(r) De r
Nuclear Energies H + H Dissociation Chemical Bond Energies De is called the Equilibrium Dissociation Energy G(r) De r
Nuclear Energies H + H Dissociation Chemical Bond Energies De is called the Equilibrium Dissociation Energy G(r) De r
H + H Dissociation G(r) r
H + H Dissociation G(r) r
H + H Dissociation G(r) 0 r
H + H Dissociation G(r) 1 0 r
H + H Dissociation G(r) 2 1 0 r
H + H Dissociation G(r) v=3 2 1 0 r
H + H Dissociation G(r) v=3 2 1 0 r
H + H Dissociation G(r) v=3 2 1 0 r
H + H Dissociation G(r) v=3 2 1 0 r
H + H Dissociation G(r) v=3 2 1 0 r
H + H Dissociation G(r) v=3 2 1 0 r
H + H Dissociation G(r) v=3 2 1 0 r
H + H Dissociation G(r) v=3 2 1 0 r
Nuclear Energies H + H E(r) Chemical Energies Rotational levels 0 r
Nuclear Energies H + H E(r) Chemical Energies Morse Potential V(r) = De(1-e-a(r-re))2 Anharmonicity G(v) = ω(v+ ½) - αω2(v+ ½)2 α = ¼De-4 0 r
v = 6 6½ ω G(r) 5½ ω v = 5 v = 4 4½ ω v = 3 3½ ω v = 2 2½ ω Notice that the energy levels are equidistantly space byω v = 1 1½ ω v = 0 ½ ω re r – re
Nuclear Energies H + H E(r) Chemical Energies v=3 2 1 0 r Harry Kroto 2004
Nuclear Energies H + H Dissociation Chemical Bond Energies De is called the Equilibrium Dissociation Energy G(r) De r
E(r) r