270 likes | 457 Views
Spontaneous ordering of semiflexible polymers on nanotubes and nanospheres. Simcha Srebnik Chemical Engineering Technion. Why study semiflexible polymers?. Biopolymers double-stranded DNA unstructured RNA unstructured polypeptides (proteins). Semiflexible Polymers aromatics
E N D
Spontaneous ordering of semiflexible polymers on nanotubes and nanospheres Simcha Srebnik Chemical Engineering Technion
Why study semiflexible polymers? • Biopolymers • double-stranded DNA • unstructured RNA • unstructured polypeptides (proteins). • Semiflexible Polymers • aromatics • bulky side groups Unlike the ideal chain, there is no consistent model that describes their behavior
Polymer statistics • The semiflexible chain • N=104, lp= 1 (ideal), 6.5 (e.g., polyacrylamide), 500 (α-helix) For flexible chains,
qi i–1 i The wormlike chain model • Kratky-Porod chains • the orientation correlation function for a worm-like chain follows an exponential decay si Kratky and Porod, Recl. Trav. Chim. Pays-Bas 68 (1949) 1106
Scaling of semiflexible chains • The KP model accurately predicts end-to-end distance for the entire range of chain flexibility • Drawback • Cannot obtain end-to-end distance distribution for comparison with experiments (S(k)) • Other exact theories exist, but solution is numerical and extension to other related problems (e.g., external forces, geometrical constraints) is difficult. flexible rigid
Coarse-grained simulation • Use simplified models of ‘pearl necklace’ polymer chains • Ideal (ghost particles) • excluded volume (hard sphere) • Lennard-Jones (soft sphere) Polymer lp/l0 | Poly(ethylene oxide) 2.5 5 Poly(propylene) 3 6 Poly(ethylene) 3.5 8 Poly(methyl methacrylate) 4 10 Poly(vinyl chloride) 4 10 Poly(styrene) 5 15 Poly(acrylamide) 6.5 23 Cellulose diacetate 26 230 Poly(para-benzamide) 200 7000 DNA (in double helix) 300 13000 Poly(benzyl-l-glutamate) (α-helix) 500 30000 lp ~ 0.6
s i + 1 i i – 1 l Modeling ‘ideal’ semiflexible chains • Current computer resources limit our simluations to chains with ~102 monomers. • Develop model for analyzing conformational behavior of very long chains. • Limited to non-interacting systems. e
Polymer adsorption on curved manifolds • Noncovalent functionalization of nanotubes using polymer wrapping • Dispersion of CNTs in aqueous or organic media • Mechanical reinforcement • Fluorescent labeling • Sensors and biosensors (conjugated polymers/biopolymers) • Polymer in or on spheres • DNA packaging in viruses, vesicles, or cells • Protein encapsulation • Colloidal and micellar suspensions
Carbon Nanotubes • First reported by IIjima in 1991 (“microtubules”) • Nature 354 (1991) 56-58. • Over 5000 citations!
Zheng et al., Nature materials, 2 (2003)338. Examples of helical wrapping HupR protein on MWNTs Balavoine and Shultz. Angew. Chem., 1999, 1912 PmPV coating DNA B. McCarthy, J. N. Coleman. J. Phys. Chem. B, 2002, 2210
Forces leading to helical wrapping • Molecular modeling suggests that ssDNA can bind to carbon nanotubes through -stacking, resulting in helical wrapping. (Zheng et al., Nature Materials 2 (2003) 338). • Alignment of backbone aromatic rings was also thought to determine interactions between CNTs and polymers (Zaiser and coworkers, J Phys Chem B 109 (2005) 10009; Coleman and coworkers, J Phys Chem B 106 (2002) 2210-2216). • Note: all molecular modeling studies based their conclusions regarding polymers on short oligomers • Shinkai and coworkers used TEM and AFM to confirm periodic helical structure of polysaccharides adsorbed on CNTs. Argue that helical pattern is observed because of their strong helix-forming nature. (JACS 127 (2005) 5875-5884) • ‘General phenomenon’argued by Baskaran et al. from studies on various polymers. (Chem Mater 17(2005)3389)
Smalley’s postulate • Monolayer wrapping results from a thermodynamic drive to eliminate the hydrophobic interface between the tubes and their aqueous medium. • Random adsorption is not likely to result in sufficient coverage; single tight coil would introduce significant bond-angle strain in the polymer backbone; • multiple helices are the likely configuration. Smalley and coworkers, Chem Phys Lett 342 (2001) 265
Simplest MC simulation Recipe: adsorption and frustration. • Dilute semiflexible polymer solution • Impenetrable infinite cylinder • Periodic boundaries • LJ interactions • MC moves • Reptation • Kink-jump • Pivot • Metropolis acceptance • 106 equilibration moves • Averages every 103 for additional 107 iterations
where Potential of nanotube • Surface-averaged Lennard-Jones potential between the CNT and monomers:
The total potential energy of a given polymer configuration is given by:
R=2, N=100 lp lp k=0 k=50
Effect of concentration N=100, R=3, k=50 Nc=2 Nc=3 Nc=5 Nc=8
Transitions helix adsorption
Helical pitch • Helical pitch depends on NT radius and chain flexibility lp
What drives helical polymer wrapping? • Hydrophobic drive? • Monolayer adsorption also achieved with weak interactions between monomers and tube for semiflexible chains • Not sufficient to induce helicity • Helical polymers? • Too stringent, semiflexible polymers sufficient • Helicity of nanotube (-stacking) • Geometry (tube radius) and chain flexibility provide strong drive for helical wrapping
A e s i B i+1 i–1 O VIM on sphere Position of bead i+1 is determined from a point along the path of a great circle connecting monomer i and the intersection of line OA with the surface of the sphere.
Polymer wrapping of a sphere N=1000 monomers confined to a sphere with radius =10
Conclusions • weak surface interactions are sufficient to overcome low entropy barrier of semiflexible chains and lead to monolayer adsorption • helix is a stable ‘universal’ state for polymers determined solely by surface curvature (NT and sphere) and polymer bending energy. • geometry determines helical pitch at intermediate radii for semiflexible chains • multiple helices form due to vdW interactions between monomers which are sufficient to overcome (small) translational entropy of adsorbed chains
Conclusions (2) • Available computational resources limit our simulations to relatively short chains • The semiflexible chain can be effectively modeled through a summation of energy and entropy ‘vectors’ that determine the growth or position of a monomer based solely on the two previous monomers
Acknowledgement • Liora Levi • Yevgeny moskovitz • Hely Oizerovich • Inna Gorevitz • Iliya Kusner • ISF • Rubin Scientific and Medical Research Fund