1 / 17

Combining Functions

Combining Functions. MCC9-12.F.BF.1b Combine standard function types using arithmetic operations. . Adding Linear Functions . f(x) + g(x) If f(x)= 3x - 4 and g(x) = -2x + 6, find f(x) + g(x). (3x – 4) + (-2x + 6) OR 3x – 4 + -2x +6 1x + 2 So, f(x) + g(x) = 1x + 2.

claral
Download Presentation

Combining Functions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Combining Functions MCC9-12.F.BF.1b Combine standard function types using arithmetic operations.

  2. Adding Linear Functions • f(x) + g(x) • If f(x)= 3x - 4 and g(x) = -2x + 6, find f(x) + g(x). • (3x – 4) + (-2x + 6) OR • 3x – 4 + -2x +6 1x + 2 • So, f(x) + g(x) = 1x + 2

  3. Adding Linear Functions • If f(x) = 7x + 3 and g(x) = 6x – 4, find f(x) + g(x).

  4. Subtracting Linear Functions • f(x) - g(x) • If f(x) = 4x -29 and g(x)= 2x – 18, find f(x) – g(x). • (4x – 29) – (2x -18) change – to + the opposite. • (4x – 29) + (-2x +18) • 4x – 29 + -2x + 18 2x - 11 • So, f(x) – g(x) = 2x – 11

  5. Subtracting Linear Functions • If f(x) = -3x + 15 and g(x) = -4x -17, find f(x) – g(x).

  6. Multiplying Linear Functions • f(x) · g(x) • If f(x) = 3x and g(x) = 2x -17, find f(x)·g(x). • (3x)(2x-17) = 3x(2x) – 3x(17) = 6x2 – 51 • So, f(x) · g(x) = 6x2 – 51

  7. Multiplying Linear Functions • If f(x) = x - 13 and g(x) = -5x, find f(x)·g(x).

  8. Dividing Linear Functions • f(x) / g(x) • If f(x) = 6x and g(x) = 2x, find f(x)/g(x). • 6x/2x = 3 • So, f(x) / g(x) = 3

  9. Dividing Linear Functions • If f(x) = x + 5 and g(x) = 2x, find f(x)/g(x).

  10. Adding exponential functions • f(x) + g(x) • If f(x) = 2x and g(x) = 2x, find f(x) + g(x). • 2x + 2x = 2(2x)

  11. Adding exponential functions • If f(x) = 2(4x) and g(x) = 4x, find f(x) + g(x)

  12. Subtracting exponential functions • f(x) – g(x) • If f(x) = 5(8x) and g(x) = 2(8x), find f(x) – g(x). • 5(8x) – 2(8x) = 3(8x) • So f(x) – g(x) = 3(8x)

  13. Subtracting exponential functions • If f(x) = 4(6x) and g(x) = 7(6x), find f(x) – g(x).

  14. Multiplying exponential functions • If f(x) = 52x and g(x) = 5x, then find f(x)·g(x). • 52x · 5x = 52x + x = 53x • When multiplying exponential functions, bases must be the same. You add the exponents. • So f(x) · g(x) = 53x

  15. Multiplying exponential functions • If f(x) = 8(9)x and g(x) = 1/2(9)-2x, find f(x) · g(x).

  16. Dividing Exponential Functions • f(x)/g(x) • If f(x) = 8(26x) and g(x) = 4(23x), find f(x)/g(x). • 8(26x) = 2(23x) 4(23x)

  17. Dividing Exponential Functions • If f(x) = 8(94x) and g(x) = 2(9-3x), find f(x)/g(x).

More Related