1 / 72

DEPARTAMENTO DE ESTATÍSTICA Prof Hélio Magalhães de Oliveira, UFPE, 21/08/2013

DEPARTAMENTO DE ESTATÍSTICA Prof Hélio Magalhães de Oliveira, UFPE, 21/08/2013 1/2 × n-ário = 1 × (semi-n-ário) TKS Dr Francisco Cysneiros. UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA.

clyde
Download Presentation

DEPARTAMENTO DE ESTATÍSTICA Prof Hélio Magalhães de Oliveira, UFPE, 21/08/2013

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DEPARTAMENTO DE ESTATÍSTICA Prof Hélio Magalhães de Oliveira, UFPE, 21/08/2013 1/2 × n-ário = 1 × (semi-n-ário) TKS Dr Francisco Cysneiros

  2. UNIVERSIDADE FEDERAL DE PERNAMBUCODEPARTAMENTO DE ESTATÍSTICA Dados estatísticos sobre a vida biológica: a aleatoriedade como marca indelével no genoma das espécies. Prof. H. Magalhães de Oliveira UFPE – AGO 2013

  3. Escala Cronológica da Evolução da Vida DNA – origem da vida: Uma cronologia (Battail, 2001)

  4. 1a mudança: Superação do vitalismo. 2a mudança: desaparecimento dos contornos nítidos na distinção entre vivos e não vivos Seleção natural Darwinismo e Teoria da evolução O DNA / RNA O QUE É REALMENTE A VIDA? Tendências estão derrubando as barreiras entre o vivo e o não vivo.

  5. Propriedades características da vida natural Capacidade de reprodução Sensibilidade ao ambiente Metabolismo Singularidade química Alto grau de complexidade e organização Programação genética que dirige o desenvolvimento Histórico modelado pela seleção natural

  6. SEMENTES, estão vivas, mas não metabolizam VIRUS, não se auto-reproduzem (vide mulas) SALSICHASnão estão vivas, mas contém programa genético, são feitas de proteínas e DNA VIRUS DE COMPUTADOR, com propriedades da vida biológica: reproduzem-se, são sensíveis ao ambiente, metabolizam (consomem processamento, memória), podem ser complexos, sobrevivem usando seleção natural. Dificuldades para definir a vida.

  7. Os organismos vivos => células ProcariontesvsEucariontes As células dos eucariontes- coordenação de todas as atividades: o núcleo Núcleo: DNA, contém a informação genética. transmissão da informação genética e síntese de proteínas. Fundamentos da Estrutura do DNA

  8. DNA – Estrutura e Função Bases nitrogenadas Purinas Pirimidinas

  9. DNA – Estrutura Ligação Fosfodiéster

  10. DNA – Estrutura Bases Complementares

  11. 1953: descoberta da estrutura do DNA Watson & Crick: estrutura dupla hélice do DNA

  12. DNA – Estrutura e Função Dupla Hélice

  13. DNA – Duplicação • Ocorre na presença da DNA polimerase, querompe as pontes de hidrogênio entre as bases nitrogenadas e as duas fitas do DNA se afastam: • Nucleotídeos livres existentes na célula encaixam-se nas fitas, sempre em suas bases complementares • São formadas duas moléculas de DNA idênticas. • A duplicação do DNA é chamada semiconservativa porque a molécula nova do DNA tem uma fita nova e uma fita velha, originária da molécula mãe.

  14. DNA DNA RNA Síntese Protéica Relação do Dogma Central replicação X transcrição In vivo RNA polimerase tradução

  15. Síntese de Proteínas -Tradução • A tradução ocorre nos ribossomas • Trinca de bases do mRNA códon • Trinca de bases do tRNA •  anti-códon

  16. Tradução Nirenberg & Kohana

  17. Síntese de proteínas

  18. Mapping DNA into Proteins Thegeneticsourceischaracterizedby a four-letteralphabet : N={U, C, A, G} Input alphabet N3={n1,n2,n3 | niN, i=1,2,3} Output alphabet A:={Leu, Pro, Arg, Gln, His, Ser, Phe, Trp, Tyr, Asn, Lys, Ile, Met, Thr, Asp, Glu, Gly, Ala, Val, Stop} High redundancy map GC: N3 (|| N3 ||=64)  A (||A||=21)

  19. O Código Genético 2a Letra 1a Letra 3a Letra

  20. “A analogia me levaria a um passo adiante, isto é, à crença de que todos os animais e vegetais descendem de um protótipo único [...] Todos os seres vivos têm muito em comum, em sua composição química, em suas vesículas germinativas, em sua estrutura celular e em suas leis de crescimento e reprodução [...] Provavelmente todos os seres orgânicos que tenham em qualquer ocasião vivido nessa Terra, descendem de alguma forma primordial única, na qual a vida primeiro respirou. ... De um começo tão simples, formas infindáveis, as mais belas e as mais maravilhosas, evoluíram e estão evoluindo.” CHARLES DARWIN (1859) On the Origin of Species

  21. Similaridade entre DNA de humanos: 99 a 99,1% Similaridade humanos - chimpanzés: 98,5% Somente ~2% do genoma humano codifica proteínas: 3.109 bp -> 120 Mb/(8b/B)=15MB DNA: Similaridades

  22. homem ATA ACC ATG CAC ACT ACT ATA ACC ACC CTA ACC CTG ACT TCC CTA ATT CCC CCC ATC CTT ACC CTC GTT ACC ... gorila ATA ACT ATG TAC GAT ACC ATA ACC ACC TTA GCC CTA ACT TCC TTA ATT CCC CCT ATC CTT ACC TTC ATC ACT ... orangotango ACA GCC ATG TTT ACT ACC ATA ACTGCC CTC ACC TTA ACT TCC CTA ATC CCC CCC ATTACCGCT CTC ATT AAC ... O homem é mais próximo do gorila ou do orangotango?Comparação do DNA mitocondrial

  23. 1953: primeira seqüência de aminoácidos Sanger: seqüênciade aminoácidos da insulina bovina MALWTRLRPLLALLALWPPPPARAFVNQHLCGSHLVEALYLVCGERGFFYTP KARREVEGPQVGALELAGGPGAGGLEGPPQKRGIVEQCCASVCSLYQLENYCN

  24. Inner-to-outer map 2D-Gray genetic map, genetic world-chart representations DE OLIVEIRA, H.M.,SANTOS-MAGALHÃES, N.S., The Genetic Code revisited: Inner-to-outer map, 2D-Gray map, and World-map Genetic Representations, 11th International Conference on Telecommunications, August 1-7, Fortaleza, Brazil, ICT2004, 2004, submetido. SANTOS-MAGALHÃES, N.S., BOUTON, E.A., DE OLIVEIRA, H.M., How to Represent the Genetic Code?, Reunião Anual da Sociedade Brasileira de Bioquímica, SBBq, 2004, submetido. Representações Alternativas para o Código Genético

  25. TheInner-to-outerMap First nucleotide: inner circle Second nucleotide: surrounding Third nucleotide: outer region Homofonemas Inner-to-outer map for the genetic code

  26. Modem 64-QAM de Oliveira

  27. U [11]; A  [00]; G  [10]; C  [01]. bacteriophage FX174: Each binary codeword belongs to a constant weigh code. DNACodeword G...C 01 10 A...T 00 11 G...C 01 10 T...A 11 00 T...A 11 00 T...A 11 00 T...A 11 00 A...T 00 11 T...A 11 00 G...C 01 10

  28. Representação 2D-Gray de Oliveira, Santos Magalhães 2004

  29. Código Genético:Mapeamento dos aminoácidos Santos Magalhães, E.Bouton, de Oliveira 2004

  30. Coloured 2D-Gray genetic map Coloured Genetic code map for amino-acids This representation merges regions mapped into the same amino-acid !

  31. Espectro para localização de Éxons(Gene F56F11.4) Análisegenômica

  32. Análise wavelet de seqüências genômicas b-cardíaco humano 6.000 bp Oncogênio c-myb (galinha) 8.200 bp

  33. ÍNTROS & ÉXONS

  34. Eliminando os íntrons na transcrição

  35. ...ACA GAC ACC ATG GTC CAC CTT GAC... . .. CAG ACA CCA TGG TGC ACC TGG... ... AGA CAC CAT GGT GCA CCT TGA ... Genes da sub-unidade b da hemoglobina (2 genes) Trecho de DNA da b-hemoglobina humana(reading frames) B A 90 bp 131 bp 222 bp 851 bp 126 bp

  36. GGG TTC TTG GGA GCA GCA GGA AGC ACT ATG GGC GCA ... O câncer é causado por agentes (carcinógenos, radiação, vírus) que danificam o DNA, ou interferem nos seus mecanismos de replicação e/ou reparo. Porção do DNA do genoma do HIV-1

  37. Genoma Music - Body MusicSusumo Ohno URL- http://www.toshima.ne.jp/~edogiku/FlaMovIntro/

  38. 5.386 bp- 10 genes (A até K) Gene n. de aminoácidos quadro A 455 (1539 bp) 2 B 120 (360 bp) 1 C 86 (258 bp) 1 D 152 (456 bp) 3 E 91 (273 bp) 1 F 427 (1281 bp) 2 G 175 (525 bp) 1 H 328 (984 bp) 3 J 38 (114 bp) 2 K 56 (168 bp) 3 5.958 bp DNA do bacteriófago fX174

  39. Genes no DNA do bacteriófago fX174

  40. GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGATAAAGCAGGAATTACTACTGCTTGTTTACGAATTAAATCGAAGTGGACTGCTGGCGGAAAATGAGAAAATTCGACCTATCCTTGCGCAGCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCATCAACTAACGATTCTGTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGACTGGTTTAGATATGAGTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGACATTTTAAAAGAGCGTGGATTACTATCTGAGTCCGATGCTGTTCAACCACTAATAGGTAAGAAATCATGAGTCAAGTTACTGAACAATCCGTACGTTTCCAGACCGCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGCCGTTTTGGATTTAACCGAAGATGATTTCGATTTTCTGACGAGTAACAAAGTTTGGATTGCTACTGACCGCTCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTGGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTTATTGCTGCCGTCATTGCTTATTATGTTCATCCCGTCAACATTCAAACGGCCTGTCTCATCATGGAAGGCGCTGAATTTACGGAAAACATTATTAATGGCGTCGAGCGTCCGGTTAAAGCCGCTGAATTGTTCGCGTTTACCTTGCGTGTACGCGCAGGAAACACTGACGTTCTTACTGACGCAGAAGAAAACGTGCGTCAAAAATTACGTGCGGAAGGAGTGATGTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGTACTAAAGGCAAGCGTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAACAATTTTAATTGCAGGGGCTTCGGCCCCTTACTTGAGGATAAATTATGTCTAATATTCAAACTGGCGCCGAGCGTATGCCGCATGACCTTTCCCATCTTGGCTTCCTTGCTGGTCAGATTGGTCGTCTTATTACCATTTCAACTACTCCGGTTATCGCTGGCGACTCCTTCGAGATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGGCCTTGCTATTGACTCTACTGTAGACATTTTTACTTTTTATGTCCCTCATCGTCACGTTTATGGTGAACAGTGGATTAAGTTCATGAAGGATGGTGTTAATGCCACTCCTCTCCCGACTGTTAACACTACTGGTTATATTGACCATGCCGCTTTTCTTGGCACGATTAACCCTGATACCAATAAAATCCCTAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACAACTATTTTAAAGCGCCGTGGATGCCTGACCGTACCGAGGCTAACCCTAATGAGCTTAATCAAGATGATGCTCGTTATGGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGCTTCCTCCTGAGACTGAGCTTTCTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAAGCTGCTTATGCTAATTTGCATACTGACCAAGAACGTGATTACTTCATGCAGCGTTACCATGATGTTATTTCTTCATTTGGAGGTAAAACCTCTTATGACGCTGACAACCGTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCATCTGGCTATGATGTTGATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCTATAAACATTCTGTGCCGCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTATACCGATATTGCTGGCGACCCTGTTTTGTATGGCAACTTGCCGCCGCGTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGTTTAAGATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCTTCCCATTCATTCAGGAACCGCCTTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGATTATGACCAGTGTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGTTTATCGCAATCTGCCGACCACTCGCGATTCAATCATGACTTCGTGATAAAAGATTGAGTGTGAGGTTATAACGCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACTTTTATTTCTCGCCATAATTCAAACTTTTTTTCTGATAAGCTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCTGTTTTACAGACACCTAAAGCTACATCGTCAACGTTATATTTTGATAGTTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCATTCAGATGGATACATCTGTCAACGCCGCTAATCAGGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGCCGACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCTATGATGTTTATCCTTTGAATGGTCGCCATGATGGTGGTTATTATACCGTCAAGGACTGTGTGACTATTGACGTCCTTCCCCGTACGCCGGGCAATAACGTTTATGTTGGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAATGCCGCGGATTGGTTTCGCTGAATCAGGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGGTGCTATTGCTGGCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTCAAAAAGCCGCCTCCGGTGGCATTCAAGGTGATGTGCTTGCTACCGATAACAATACTGTAGGCATGGGTGATGCTGGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTAACCCTGATGAGGCCGCCCCTAGTTTTGTTTCTGGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTCTGATAAGTTGCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCGCTGATAAAGGAAAGGATACTCGTGATTATCTTGCTGCTGCATTTCCTGAGCTTAATGCTTGGGAGCGTGCTGGTGCTGATGCTTCCTCTGCTGGTATGGTTGACGCCGGATTTGAGAATCAAAAAGAGCTTACTAAAATGCAACTGGACAATCAGAAAGAGATTGCCGAGATGCAAAATGAGACTCAAAAAGAGATTGCTGGCATTCAGTCGGCGACTTCACGCCAGAATACGAAAGACCAGGTATATGCACAAAATGAGATGCTTGCTTATCAACAGAAGGAGTCTACTGCTCGCGTTGCGTCTATTATGGAAAACACCAATCTTTCCAAGCAACAGCAGGTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCTCAAACGGCTGGTCAGTATTTTACCAATGACCAAATCAAAGAAATGACTCGCAAGGTTAGTGCTGAGGTTGACTTAGTTCATCAGCAAACGCAGAATCAGCGGTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGATATTTCTAATGTCGTCACTGATGCTGCTTCTGGTGTGGTTGATATTTTTCATGGTATTGATAAAGCTGTTGCCGATACTTGGAACAATTTCTGGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGGAAATAACCGTCAGGATTGACACCCTCCCAATTGTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTTCTTATTACCCTTCTGAATGTCACGCTGATTATTTTGACTTTGAGCGTATCGAGGCTCTTAAACCTGCTATTGAGGCTTGTGGCATTTCTACTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAGCAGATGGATAACCGCATCAAGCTCTTGGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATGGTGATATGTATGTTGACGGCCATAAGGCTGCTTCTGACGTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTTAATGGATGAATTGGCACAATGCTACAATGTGCTCCCCCAACTTGATATTAATAACACTATAGACCACCGCCCCGAAGGGGACGAAAAATGGTTTTTAGAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAAGCTGGCTGCTGAACGCCCTCTTAAGGATATTCGCGATGAGTATAATTACCCCAAAAAGAAAGGTATTAAGGATGAGTGTTCAAGATTGCTGGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTGCTATTCAGCGTTTGATGAATGCAATGCGACAGGCTCATGCTGATGGTTGGTTTATCGTTTTTGACACTCTCACGTTGGCTGACGACCGATTAGAGGCGTTTTATGATAATCCCAATGCTTTGCGTGACTATTTTCGTGATATTGGTCGTATGGTTCTTGCTGCCGAGGGTCGCAAGGCTAATGATTCACACGCCGACTGCTATCAGTATTTTTGTGTGCCTGAGTATGGTACAGCTAATGGCCGTCTTCATTTCCATGCGGTGCACTTTATGCGGACACTTCCTACAGGTAGCGTTGACCCTAATTTTGGTCGTCGGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAAAATACGTGGCCTTATGGTTACAGTATGCCCATCGCAGTTCGCTACACGCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCGCTTAAAGCTACCAGTTATATGGCTGTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAGTCAGATATGGACCTTGCTGCTAAAGGTCTAGGAGCTAAAGAATGGAACAACTCACTAAAAACCAAGCTGTCGCTACTTCCCAAGAAGCTGTTCAGAATCAGAATGAGCCGCAACTTCGGGATGAAAATGCTCACAATGACAAATCTGTCCACGGAGTGCTTAATCCAACTTACCAAGCTGGGTTACGACGCGACGCCGTTCAACCAGATATTGAAGCAGAACGCAAAAAGAGAGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCCGACGTTTTGGCGGCGCAACCTGTGACGACAAATCTGCTCAAATTTATGCGCGCTTCGATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGATAAAGCAGGAATTACTACTGCTTGTTTACGAATTAAATCGAAGTGGACTGCTGGCGGAAAATGAGAAAATTCGACCTATCCTTGCGCAGCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCATCAACTAACGATTCTGTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGACTGGTTTAGATATGAGTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGACATTTTAAAAGAGCGTGGATTACTATCTGAGTCCGATGCTGTTCAACCACTAATAGGTAAGAAATCATGAGTCAAGTTACTGAACAATCCGTACGTTTCCAGACCGCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGCCGTTTTGGATTTAACCGAAGATGATTTCGATTTTCTGACGAGTAACAAAGTTTGGATTGCTACTGACCGCTCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTGGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTTATTGCTGCCGTCATTGCTTATTATGTTCATCCCGTCAACATTCAAACGGCCTGTCTCATCATGGAAGGCGCTGAATTTACGGAAAACATTATTAATGGCGTCGAGCGTCCGGTTAAAGCCGCTGAATTGTTCGCGTTTACCTTGCGTGTACGCGCAGGAAACACTGACGTTCTTACTGACGCAGAAGAAAACGTGCGTCAAAAATTACGTGCGGAAGGAGTGATGTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGTACTAAAGGCAAGCGTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAACAATTTTAATTGCAGGGGCTTCGGCCCCTTACTTGAGGATAAATTATGTCTAATATTCAAACTGGCGCCGAGCGTATGCCGCATGACCTTTCCCATCTTGGCTTCCTTGCTGGTCAGATTGGTCGTCTTATTACCATTTCAACTACTCCGGTTATCGCTGGCGACTCCTTCGAGATGGACGCCGTTGGCGCTCTCCGTCTTTCTCCATTGCGTCGTGGCCTTGCTATTGACTCTACTGTAGACATTTTTACTTTTTATGTCCCTCATCGTCACGTTTATGGTGAACAGTGGATTAAGTTCATGAAGGATGGTGTTAATGCCACTCCTCTCCCGACTGTTAACACTACTGGTTATATTGACCATGCCGCTTTTCTTGGCACGATTAACCCTGATACCAATAAAATCCCTAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACAACTATTTTAAAGCGCCGTGGATGCCTGACCGTACCGAGGCTAACCCTAATGAGCTTAATCAAGATGATGCTCGTTATGGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGCTTCCTCCTGAGACTGAGCTTTCTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAAGCTGCTTATGCTAATTTGCATACTGACCAAGAACGTGATTACTTCATGCAGCGTTACCATGATGTTATTTCTTCATTTGGAGGTAAAACCTCTTATGACGCTGACAACCGTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCATCTGGCTATGATGTTGATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCTGGTCGTGTTCAACAGACCTATAAACATTCTGTGCCGCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTATACCGATATTGCTGGCGACCCTGTTTTGTATGGCAACTTGCCGCCGCGTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGTTTAAGATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCTTCCCATTCATTCAGGAACCGCCTTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGATTATGACCAGTGTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGTTTATCGCAATCTGCCGACCACTCGCGATTCAATCATGACTTCGTGATAAAAGATTGAGTGTGAGGTTATAACGCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACTTTTATTTCTCGCCATAATTCAAACTTTTTTTCTGATAAGCTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCTGTTTTACAGACACCTAAAGCTACATCGTCAACGTTATATTTTGATAGTTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCATTCAGATGGATACATCTGTCAACGCCGCTAATCAGGTTGTTTCTGTTGGTGCTGATATTGCTTTTGATGCCGACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCTATGATGTTTATCCTTTGAATGGTCGCCATGATGGTGGTTATTATACCGTCAAGGACTGTGTGACTATTGACGTCCTTCCCCGTACGCCGGGCAATAACGTTTATGTTGGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAATGCCGCGGATTGGTTTCGCTGAATCAGGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGGTGCTATTGCTGGCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTCAAAAAGCCGCCTCCGGTGGCATTCAAGGTGATGTGCTTGCTACCGATAACAATACTGTAGGCATGGGTGATGCTGGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTAACCCTGATGAGGCCGCCCCTAGTTTTGTTTCTGGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTCTGATAAGTTGCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCGCTGATAAAGGAAAGGATACTCGTGATTATCTTGCTGCTGCATTTCCTGAGCTTAATGCTTGGGAGCGTGCTGGTGCTGATGCTTCCTCTGCTGGTATGGTTGACGCCGGATTTGAGAATCAAAAAGAGCTTACTAAAATGCAACTGGACAATCAGAAAGAGATTGCCGAGATGCAAAATGAGACTCAAAAAGAGATTGCTGGCATTCAGTCGGCGACTTCACGCCAGAATACGAAAGACCAGGTATATGCACAAAATGAGATGCTTGCTTATCAACAGAAGGAGTCTACTGCTCGCGTTGCGTCTATTATGGAAAACACCAATCTTTCCAAGCAACAGCAGGTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCTCAAACGGCTGGTCAGTATTTTACCAATGACCAAATCAAAGAAATGACTCGCAAGGTTAGTGCTGAGGTTGACTTAGTTCATCAGCAAACGCAGAATCAGCGGTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGATATTTCTAATGTCGTCACTGATGCTGCTTCTGGTGTGGTTGATATTTTTCATGGTATTGATAAAGCTGTTGCCGATACTTGGAACAATTTCTGGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGGAAATAACCGTCAGGATTGACACCCTCCCAATTGTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTTCTTATTACCCTTCTGAATGTCACGCTGATTATTTTGACTTTGAGCGTATCGAGGCTCTTAAACCTGCTATTGAGGCTTGTGGCATTTCTACTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAGCAGATGGATAACCGCATCAAGCTCTTGGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATGGTGATATGTATGTTGACGGCCATAAGGCTGCTTCTGACGTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTTAATGGATGAATTGGCACAATGCTACAATGTGCTCCCCCAACTTGATATTAATAACACTATAGACCACCGCCCCGAAGGGGACGAAAAATGGTTTTTAGAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAAGCTGGCTGCTGAACGCCCTCTTAAGGATATTCGCGATGAGTATAATTACCCCAAAAAGAAAGGTATTAAGGATGAGTGTTCAAGATTGCTGGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTGCTATTCAGCGTTTGATGAATGCAATGCGACAGGCTCATGCTGATGGTTGGTTTATCGTTTTTGACACTCTCACGTTGGCTGACGACCGATTAGAGGCGTTTTATGATAATCCCAATGCTTTGCGTGACTATTTTCGTGATATTGGTCGTATGGTTCTTGCTGCCGAGGGTCGCAAGGCTAATGATTCACACGCCGACTGCTATCAGTATTTTTGTGTGCCTGAGTATGGTACAGCTAATGGCCGTCTTCATTTCCATGCGGTGCACTTTATGCGGACACTTCCTACAGGTAGCGTTGACCCTAATTTTGGTCGTCGGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAAAATACGTGGCCTTATGGTTACAGTATGCCCATCGCAGTTCGCTACACGCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCGCTTAAAGCTACCAGTTATATGGCTGTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAGTCAGATATGGACCTTGCTGCTAAAGGTCTAGGAGCTAAAGAATGGAACAACTCACTAAAAACCAAGCTGTCGCTACTTCCCAAGAAGCTGTTCAGAATCAGAATGAGCCGCAACTTCGGGATGAAAATGCTCACAATGACAAATCTGTCCACGGAGTGCTTAATCCAACTTACCAAGCTGGGTTACGACGCGACGCCGTTCAACCAGATATTGAAGCAGAACGCAAAAAGAGAGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCCGACGTTTTGGCGGCGCAACCTGTGACGACAAATCTGCTCAAATTTATGCGCGCTTCGATAAAAATGATTGGCGTATCCAACCTGCA

  41. Menor número de genes Mycoplasma genitalium 470 genes Genoma humano Homem ~120.000 genes (pensava-se erroneamente!) Tamanho de Genomas

  42. bacteriófago fX174

  43. Vírus 10 kbp (SV40 5k, T2 48.6 k...) bactéria 4 Mbp (E. coli 4.7 Mb) Levedura 9 Mbp nematóide 90 Mbp insetos 0.2 - 7.5 Gbp mosca da fruta 180 Gbp mamíferos 1.4 - 5.7 Gbp (man 3.2 Gbp) Peixe pulmonado 140 Gbp mostarda de erva daninha 200 Mbp Pinheiro 68 Gbp amoebia dubia 670 Gbp ORDEM DE MAGNITUDE DE GENOMAS(pares de bases = bp)

  44. Valor C = Quantidade de DNA no Seu genoma haploide Muitos organismos menos complexos possuem valores C surpreendentemente elevados. O DNA “extra” tem função? Senão, por que é preservado de geração para geração? PARADOXO DO ‘valor C’

  45. b-globina humana anemia falciforme 2.000 bp Fator VIII humano hemofilia 200.000 bp Proteína kinase distrofiamuscular 3.407 bp Gene doença comprimento

  46. N. de espécies vivas na Terra ~ 107 Admita que estas sejam uma fração de 1/100 das que existiram(extinção) Tem-se ~109 espécies(aparentemente grande...) Isso é ridiculamente pequeno com respeito ao n. total de possíveis genomas na ausência de redundância GENOMAS ~ 4^109 ~10100000000 (para um genoma típico de 109 nucleotídeos) A identidade das coisas vivas fornecida pelo substrato genético, parece válida a hipótese “species are sparse” (Battail).

  47. 1977 Seqüenciamento completo genoma do fago fX174 (5.386 bp) 1995 Primeiro organismo vivo Genoma do Haemophilus influenzae (1,8 Mbp) 1996 Saccharomyces cerevisiae (12,1 Mbp) 1997 Escherichia coli (4.6 Mbp) 1998 Primeiro animal –nematóide Genoma do caenorhabditis elegans (97,1 Mbp) 1999 Primeiro cromossomo humano Cromossomo 22 (33,4 Mbp) 2000 Drosophila melanogaster (120 Mbp) 2000 Cromossomos 5, 16, 19, 21 1988-2000 Human Genome Project June 2000 – milestone draft sequence Pequena Cronologia de Genomas

  48. O temendo reducionismo dos pesquisadores genéticos acaba considerando o ser vivo como uma adição estrita de elementos justapostos. Ao estabelecer um catálogo das proteínas corremos o risco de agravar o problema. É como se tentássemos entender o funcionamento de um foguete lendo o catálogo das suas peças! Reducionaismo:Alerta Andras Paldi (CNRS).

  49. Of Protein Size and Genomes NEREIDE S. SANTOS-MAGALHÃES, HÉLIO M. DE OLIVEIRA • Of Protein Size and Genomes • NEREIDE S. SANTOS-MAGALHÃES, HÉLIO M. DE OLIVEIRA • WSEAS TRANS. ON BIOLOGY AND BIOMEDICINE • Issue 2, Vol.3, February 2006 ISSN: 1109-9518 • ~200 academia downloads • number of genes? (in living organisms) • 1) bacterial genomes; number of genes ~= genome size kbp. • bacterial proteins reveals 350 amino acid residues as typical. • 2) C. elegansgenome of 99 Mbp and genomic rate 25%. • Its protein size distribution has an average polypeptide length • of 469 amino acids.

  50. human proteins; • serum albumin has 609 amino acid residues, • collagen about 1,000, • apolipoprotein B 4,536, • human Titin 26,926. • A DNA code is specified by the triplet DNA(C,R,d), • where C is genome size (bp), • R is genomic rate • d is coding density (genes/bp). • number of protein-coding base pairs • R= • total number C of base pairs of the genome.

More Related