120 likes | 135 Views
Learn how to expand and simplify expressions involving multiplying pairs of brackets using the Box Method, FOIL Method, and the Separation Method. Examples and exercises provided.
E N D
This means to multiply out a pair, or more, of brackets e.g.(ax + b) (cx + d).There are 2 ways of expanding brackets. They are: • The Box Method • The FOIL Method
The Box Method Multiply the individuals components together (2a + 3)(4a + 2)
The Box Method (2a + 3)(4a + 2)
We now have four separate values so (2a+3) (4a+2) = 8a2 + 12a + 4a +6 This can be simplified to give us our final answer (2a+3) (4a+2) = 8a2 + 16a+6
Exercise • (x + 2)(x + 1) • (x + 8)(x + 2) • (x + 3)(x + 3) • (x + 4)(x – 5) • (x – 9)(x + 2) • (x + 8)(x – 3) • (x – 1)(x – 6) • (x – 2)(x + 8) • (x + 2)(5 – x) • (8 – x)(1 – x) • x2 + 3x + +2 • x2 +10x + 16 • x2 + 6x + 9 • x2 – x - 20 • x2 – 7x - 18 • x2 + 5x - 24 • x2 – 7x + 6 • x2 + 6x – 16 • -x2 + 3x + 10 • x2 – 9x + 8
The FOIL method FOIL stands for: FIRST, OUTER, INNER, LAST And refers to the order in which the values are multiplied. For Example : (x + 3) (x - 5) FIRST, xxx = x2 OUTER, x x-5 = -5x INNER, +3xx = 3x LAST +3 x-5= -15 SIMPLIFY (x + 3) (x - 5) = x2 -2x -15
Example 2 : (2x - 3) (4x - 5) FIRST, 2xx4x = 8x2 OUTER, 2x x-5 = -10x INNER, -3x4x = -12x LAST -3 x-5 = +15 SIMPLIFY (2x - 3) (4x - 5) = 8x2 -22x +15
Exercise • (x + 5) (x + 5) • (2x + 3) (5x – 4) • (x – 3) (x – 3) • (3 + x) (3 + x) • (2x – 9) (2x + 9) • (x + 9) (x – 2) • (5x – 1) (6x + 2) • (3x – 7) (2x – 3) • (2 + x) (x – 5) • (8 + 2x) (1 + x) • x2 + 10x +25 • 10x2 + 7x – 12 • x2 – 6x + 9 • x2 + 6x + 9 • 4x2 – 81 • x2 + 7x – 18 • 30x2 + 4x – 2 • 6x2 – 23x + 21 • x2 – 3x – 10 • 2x2 + 10x + 8
The Separation Method Separating the brackets will often make life much easier. For example (x + 5) (2x – 3) = x(2x – 3) +5(2x-3) Now we can multiply out the separate brackets to obtain x(2x – 3) = 2x2 -3xand 5(2x-3) = 10x -15 Adding these will give 2x2 -3x + 10x -15 = 2x2 + 7x -15
Example 2 (x2 + 2x - 5) (2x – 3) = x2(2x – 3) + 2x(2x-3) – 5(2x-3) Now we can multiply out the separate brackets to obtain x2(2x – 3) = 2x3 - 3x2 2x(2x – 3) = 4x2 – 6x and -5(2x-3) = -10x +15 Adding these will give 2x3 -3x2 +4x2 -6x - 10x +15 = 2x3 + x2 - 16x +15
Exercise • (x + 4) (x + 4) • (x + 3) (5x – 4) • (x + 3) (x – 3) • (3 + x) (3 – x) • (2x + 9) (2x + 9) • (2x + 9) (4x – 2) • (6x – 2) (x + 1) • (2x – 7) (3x – 3) • (2 + 3x) (x2 – 4x) • (8 + x + x2) (1 + 5x) • x2 + 8x +16 • 5x2 + 11x – 12 • x2 – 9 • 9 – x2 • 4x2 + 36x + 81 • 8x2 + 32x – 18 • 6x2 + 4x – 2 • 6x2 – 27x + 21 • 3x3 – 10x2 – 8x • 5x3 + 6x2 + 41x + 8