670 likes | 840 Views
RHIC physics and AdS/CFT. Amos Yarom, Munich. together with: S. Gubser and S. Pufu. TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A A. g YM. 1. ~ 170 MeV. Energy. Overview. The quark gluon plasma. ?. AdS/CFT. J. Maldacena.
E N D
RHIC physics and AdS/CFT Amos Yarom, Munich together with: S. Gubser and S. Pufu TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAAA
gYM 1 ~170 MeV Energy Overview • The quark gluon plasma ?
AdS/CFT J. Maldacena Overview • The quark gluon plasma • N=4 SYM plasma via AdS/CFT
Overview • The quark gluon plasma • N=4 SYM plasma via AdS/CFT ?
Overview • The quark gluon plasma • N=4 SYM plasma via AdS/CFT • Energy loss of a moving quark
Overview • The quark gluon plasma • N=4 SYM plasma via AdS/CFT • Energy loss of a moving quark
Overview • The quark gluon plasma • N=4 SYM plasma via AdS/CFT • Energy loss of a moving quark • Summary
H E A V Y I O N R E L A T I V I S T I C C O L L I D E R The quark gluon plasma at RHIC
pT Jet quenching 197 ×
Jet quenching (Phenix, 2005)
AdS5 CFT AdS/CFT J. Maldacena N=4 SYM plasma via AdS/CFT Vacuum Empty AdS5 gYM2 N L4/’2 L3/2 G5 N2 J. Maldacena hep-th/9711200
AdS5 CFT T>0 N=4 SYM plasma via AdS/CFT Empty AdS5 Thermal state Vacuum AdS5 BH gYM2 N L4/’2 L3/2 G5 N2 Horizon radius Temperature J. Maldacena hep-th/9711200 E. Witten hep-th/9802150
0 x1 xi, t AdS5 CFT Thermal state AdS5 BH gYM2 N L4/’2 z0 1/ T z0 L3/2 G5 N2 z Horizon radius Temperature E. Witten hep-th/9802150 AdS Black holes
AdS5 CFT z0 AdS/CFT J. Maldacena Friction coefficient (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006) 0 ? Massive parton Endpoints of an open string J. Maldacena hep-th/9803002 z
AdS5 CFT z0 Friction coefficient (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006) 0 ? Massive parton Endpoints of an open string J. Maldacena hep-th/9803002 z
F F z0 Friction coefficient (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006) 0 z
AdS/CFT J. Maldacena Friction coefficient (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006)
Measurables which have been compared • Friction coefficient • Energy density • Shear viscosity • Jet quenching parameter (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006) (Gubser, Klebanov, Peet, 1996) (Policastro, Son, Starinets, 2001) (Liu, Rajagopal, Wiedemann, 2006)
Measuring jets
=p Measuring di-jets
(STAR, 0701069) Measuring di-jets
(STAR, 0701069) Measuring di-jets =
(STAR, 0701069) Measuring di-jets »-1
Creation of sound waves (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006)
Creation of sound waves (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006)
Mach cones and di-jets (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006) »-1
AdS5 CFT z0 Mach cones in N=4 SYM 0 z
0 AdS5 CFT z0 z Metric fluctuations AdS black hole The energy momentum tensor Gmn(z,k)
z0 The energy momentum tensor 0 z
The energy momentum tensor Cylindrical symmetry Gauge choice Vector modes Tensor modes
The energy momentum tensor Tensor modes Vector modes + first order constraint
The energy momentum tensor Tensor modes Vector modes Scalar modes + first order constraint + 3 first order constraints
Energy density for v=3/4 Over energy Under energy
v=0.75 v=0.58 v=0.25
Small momentum approximations 1-3v2 > 0 (subsonic)
X1 > 0 Im(K1) Re(K1) v increases v decreases X1 < 0 Small momentum approximations 1-3v2 > 0 (subsonic)
X1 > 0 Im(K1) Re(K1) v increases X1 < 0 X1 Small momentum approximations 1-3v2 < 0 (supersonic) 1-3v2 = 0 ? ?
Small momentum approximations 1-3v2 < 0 (supersonic) 1-3v2 > 0 (subsonic)
Im(K1) Re(K1) Small momentum approximations s=1/3 cs2=1/3
Multi-scale analysis Large distances – linear hydrodynamic picture valid Intermediate distances – nonlinear hydrodynamics Short momenta – Strong dissipative effects
v=0.75 v=0.58 v=0.25