1 / 35

1 Lei na Forma de Taxas e sua aplicação a Sistemas Abertos

1 Lei na Forma de Taxas e sua aplicação a Sistemas Abertos. Primeira lei da termodinâmica em termos de taxa.

crete
Download Presentation

1 Lei na Forma de Taxas e sua aplicação a Sistemas Abertos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1 Lei na Forma de Taxas e sua aplicação a Sistemas Abertos

  2. Primeira lei da termodinâmica em termos de taxa Muitas vezes é vantajoso usar a primeira lei em termos de taxa, expressando a taxa média ou instantânea de energia que cruza a fronteira do sistema como calor e trabalho — e a taxa de variação de energia do sistema. Procedendo desse modo estamos nos afastando do ponto de vista estritamente clássico, pois basicamente a termodinâmica clássica cuida de sistemas que estão em equilíbrio e o tempo não é um parâmetro importante para sistemas que estão em equilíbrio. Consideremos um intervalo de tempo dt, durante o qual uma quantidade de calor dQ atravessa a fronteira do sistema, um trabalho dW é realizado pelo sistema, a variação de energia interna é ΔU, de energia cinética é Δ (EC) e da energia potencial é Δ (EP). Da primeira lei, pode-se escrever dQ + dW = dU + dEC +dEP

  3. taxa instantânea de transferência de calor, potencia [W] taxa instantânea de transferência de trabalho, potência [W] Portanto a primeira lei em termos de fluxo é: Exercício 4.1. Durante a operação de carregamento de uma bateria, a corrente elétrica, I, é de 20 ampéres, e a tensão, e, é de 12,8 Volts, A taxa de transferência de calor, Q , da bateria para o meio é de 10 W. Qual a taxa de aumento de energia interna?

  4. Lei da Conservação da Massa

  5. Fórmula Geral da Equação da Massa V constante na seção ( v media ) Balanço de massa em regime permanente Balanço de massa em regime permanente ( fluido compressível )

  6. Exercício 4.2. Ar está escoando no interior de um tubo de 0,2 m de diâmetro à velocidade uniforme de 0,1 m/s. A temperatura e a pressão são 25 oC e 150 kPa. Determinar a taxa mássica, ou vazão mássica.

  7. Exercício 4.3. Um tanque de água cilíndrico com 1,2 m de altura e 0,9 de diâmetro , aberto, encontra-se inicialmente cheio de água. Abrindo-se uma tampa na parte inferior do tanque permite-se que saia um jato de água com diâmetro de 13 mm . Determinar o tempo necessário para que o nível do tanque atinja 0,6 m , medido a partir do fundo do tanque,

  8. Exercício 4.4. Uma mangueira de jardim conectada a um bocal é usada para encher um balde de 10 galões. O diâmetro da mangueira é de 2 cm e ele se reduz a 0,8 cm na saída do bocal. São necessários 50 s para encher o balde com água. Nessas condições determine: as vazões volumétrica e mássica de água através da mangueira a velocidade de média na saída do bocal.

  9. Primeira lei da termodinâmica a num sistema aberto

  10. Transporte de energia pela massa

  11. Exercício 4.5. Vapor escapa de uma panela de pressão de 4 l , cuja pressão interna é de 150 kPa. Observa-se que a quantidade de líquido da panela diminui em 0,6 l por minuto , quando são estabelecidas condições de operação estáveis. Sabe-se que a seção transversal da abertura de saída é de 8 mm2 . Para essas condições determinar: a) o taxa mássica e a velocidade do vapor na saída; b) as energias total e de escoamento por unidade de massa de vapor; c) a taxa de saída de energia da panela.

  12. Taxa de variação de energia para processo em regime permanente e com escoamento unidimensional.

  13. Exercício 4.6

  14. Dispositivos de Engenharia com escoamento em regime permanente. A. Turbinas e compressores. Turbina , W ou < 0 Compressor, W ou >0 Exercício 4.7. Ar a 100kPa e 280 K é comprimido em regime permanente até atingir 600 kPa e 400 K. O vazão mássica do ar é 0,02 kg/s e sabe-se que ocorre uma perda de calor de 16 kJ/kg durante o processo. Considerando que as variações de energia potencial e cinética são desprezíveis, determinar a potência consumida pelo equipamento.

  15. Exercício 4.8. A potencia gerada por uma turbina adiabática é de 5 MW e as condições de entrada e saída estão indicadas na tabela ao lado. Com base nessas informações: • comparar as magnitudes das grandezas Δh, Δec, Δep; • determinar o trabalho realizado por unidade de massa de vapor que escoa pela turbina; • c) calcular o vazão mássica de vapor.

  16. Exercício 4.9. O fluxo de massa que entra em uma turbina a vapor d'água é de 1,5 kg/s e o calor transferido da turbina para o meio é de 8,5 kW. São conhecidos os seguintes dados para o vapor de água que entra e sai da turbina: Determinar a potência fornecida pela turbina. ; Regime permanente, Primeira lei da termodinâmica Do dados do problema, Q v c =-8,5kW

  17. B. Trocadores de calor.

  18. Exercício 4.10

  19. C. Escoamento em tubos e dutos. Exercício 4.11

  20. Processos de Estrangulamento e o Coeficiente de Joule -Thomson A. Válvulas de estrangulamento . Dispositivos que restringem o escoamento e causam queda significativa de pressão . A queda de pressão é quase sempre acompanhada por queda na temperatura . A magnitude da queda ( ou eventual aumento da temperatura , depende de uma propriedade dos fluidos chamada coeficiente de Joule-Thomson. São dispositivos adiabáticos( Q =0 ), nos quais não há exportação ou importação de trabalho (W=0) e variação de energia potencial é desprezível ( Δep =0). Se vs ~ ve Dispositivo isoentálpico

  21. (Coeficiente de Joule-Thomson) Se há diminuição de pressão, há diminuição de temperatura, se µJ >0; Se há diminuição de pressão, há aumento de temperatura, se µJ <0; (hidrogênio, H2 e o hélio, He) Para um valor nulo do coeficiente de Joule Thomson, temos o denominado ponto de inversão. A ilustra essas observações, onde se nota que o lugar geométrico definido por todos os pontos de inversão constitui a curva de inversão. Gráfico T x P, mostrando o Comportamento do Coeficiente de Joule-Thomson.

  22. Exercício 4.12. O fluido refrigerante 134a entra no tubo capilar de um refrigerador com liquido saturado a 0,8 MPa e é estrangulado e a sua pressão na saída é 0,12 MPa. Determinar o título do fluido no estado final e a qual a queda de temperatura.

  23. Processos de Estrangulamento e o Coeficiente de Joule -Thomson B. Bocais e difusores . Exercício 4.13 . Provar que são dispositivos isoentálpicos. Exercício 4.14 . Ar entra a 10 oC e 80 kPa no difusor de um motor a jato com velocidade de 200m/s . A área de entrada do difusor é 0,4 m2. O ar sai do difusor com uma, velocidade muito pequena comparada à de entrada . Determinar a) a vazão mássica de ar e b) a temperatura na saída.

  24. Exercício 4.15. Vapor de água a 0,5 MPa e 200 oC entra em um bocal termicamente isolado com uma velocidade de 50 m/s, e sai à pressão de 0,15 MPa e à velocidade de 600 m/s. Determinar a temperatura final do vapor e ele estiver superaquecido e o título se for vapor úmido. Da 1a lei da termodinâmica, regime permanente resulta

  25. Análise de uma unidade geradora . Exercício 4.16. Considere uma instalação motora a vapor simples como mostrada na figura abaixo. Os dados na tabela referem-se a essa instalação. Determinar as seguintes quantidades , por kg de fluido que escoa através da unidade. 1 -Calor trocado na linha de vapor entre o gerador de vapor e a turbina 2 -Trabalho da turbina 3 -Calor trocado no condensador 4 -Calor trocado no gerador de vapor.

  26. Como nada foi dito sobre as velocidades dos fluxos mássicos e suas posições, as variações de energia cinética e potencial, são desprezadas. As propriedades dos estados 1,2 e 3 podem ser lidas nas tabelas termodinâmicas, assim: P1=2,0 MPa; T1=300 oC. h1 = 3023,5 kJ/kg P2=1,9 MPa; T2=290 oC h2 = 3002,5 kJ/kg P3=15,0 kPa; y = 0,9 hl = 25,91 kJ/kg hv = 2599,1 kJ/kg As propriedades do estado 4 devem ser lidas da tabela de propriedades comprimidas ou, de forma aproximada, da tabela de propriedades saturadas para a temperatura dada. Assim P=14,0 kPa; T = 45 oC h4 = 188,5 kJ/kg

  27. 1Calor trocado na linha de vapor entre o gerador de vapor e a turbina Aplicando-se a 1a lei por unidade de fluxo de massa temos 2 Trabalho da turbina Deve-se aplicar a primeira lei à turbina para fluxo unitário. Uma turbina é essencialmente uma máquina adiabática. Portanto é razoável desprezar o calor trocado com o meio ambiente. Assim,

  28. 3 .Calor trocado no condensador Neste caso, não há trabalho, assim, 4. Calor trocado no gerador de vapor. Neste caso não há realização de trabalho, e a primeira lei fica Na resolução, necessitamos do valor de h5, que pode ser obtido considerando um volume de controle na bomba do sistema.

  29. 5. Trabalho na bomba A primeira lei aplicada à bomba, com a hipótese de que o processo é adiabático, (Q=0 ), não há transferência de calor da bomba para o meio ou vice-versa, resulta: Portanto: Assim para o gerador, obtém-se:

More Related