270 likes | 325 Views
Nanoscale Materials: Fabrication, Characterization, and Simulation. Xuemei May Cheng Bryn Mawr College September 27, 2010. Outline. Introduction to nanoscience Fabrication of nanoscale materials Characterization of nanoscale materials Simulation for nanoscale materials Summary.
E N D
Nanoscale Materials: Fabrication, Characterization, and Simulation Xuemei May Cheng Bryn Mawr College September 27, 2010
Outline • Introduction to nanoscience • Fabrication of nanoscale materials • Characterization of nanoscale materials • Simulation for nanoscale materials • Summary X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
a 6’ human being is 1.83m tall butterfly’s eye Hard drive ant blood cell nano gear DNA hydrogen What is nanoscale ? 100 meter centimeter 10-3 millimeter 10-6 micrometer 10-9 nanometer angstrom 10-12 picometer X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
3 D 0 D 1 D 2 D C. Ji, andP. Searson et al C.L. Chien et al M. Chen and X. M. Cheng et al, C.L. Chien et al Nanoscale Materials: Dimensionality X. M. Cheng S. I. Lim and X. M. Cheng 20 nm S. I. Lim et al Y. Hao et al X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Nanoscale materials: Novel and unique properties Symmetry Breaking Finite Size Effect Surface and Interface Constituent Material Interplay X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Nanoscale materials: Application Military Data Storage Energy Storage Nanoscale Materials Drug Delivery Home Appliances Medical Imaging X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Physicists Chemists Biologists Materials scientists Mechanical engineers Electronic engineers Medical researchers Nanomaterials research: Multidisciplinary X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Outline • Introduction to nanoscience • Fabrication of nanoscale materials • Characterization of nanoscale materials • Simulation for nanoscale materials • Summary X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
assemble “carving” Nano Fabrication: Two Approaches “Bottom-Up” Approach Building nano-scaled structures atom-by-atom, or molecule-by-molecule “Top-down” Approach Making nano-scaled structures by machining and etching techniques X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Nanofabrication: Top-down approach • Photo-lithography/electron beam lithography Lift off Deposition /Etching Develop Exposure Resist Substrate • Sputtering deposition • Electrochemical deposition • Chemical vapor deposition (CVD) • Molecular beam epitaxy (MBE) • Plasma etching • Chemical etching • Ion milling • Focused Ion Beam (FIB) X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Top-down approach example: nanowires on Au waveguide X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Nanofabrication: Bottom-up approach Templated Electrochemical Deposition
Bottom-up approach example: 3D nano-porous film X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Au Alumina template coated with Au Bottom-up approach example: nanowires and nanotubes Electrodeposition X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Outline • Introduction to nanoscience • Fabrication of nanoscale materials • Characterization of nanoscale materials • Simulation for nanoscale materials • Summary X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
5 µm (m) 100 10-3 10-6 10-9 Optical microscope Electron Microscope (SEM, TEM) Nanomaterial characterization: imaging Scanning Probe Microscope(AFM, STM) X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
100 nm 2 µm 100 µm (m) 100 10-3 10-6 10-9 Magneto-optical microscope Magnetic Force Microscope(MFM) Iron filings +Eye Photoemission Electron Microscope(PEEM) Nanomaterial characterization: magnetic imaging X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
90 ps PEEM Optics 50Ω Advanced Photon Source Argonne National Lab I0(t) Pulse Generator Nanomaterial Characterization: Time-resolve imaging • 100 nm Spatial Resolution • 90 ps Temporal Resolution I0(t) 153 ns 24-bunch mode: Dt B(t) 6 µm FeNi disk B Au Waveguide 10μm J(t) 6 µm X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Pt (20 Å) [Co (4Å)Pt(10Å)]n Pt (100 Å) SiO2 (1000 Å) Si substrate Nanomaterial characterization: X-ray diffraction (XRD) X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Nanomaterial characterization: Electrical transport measurements X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Outline • Introduction to nanoscience • Fabrication of nanoscale materials • Characterization of nanoscale materials • Simulation for nanoscale materials • Summary X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Simulation LLG micromagnetic simulator, unit cell 6X6nm2, Ms=800emu/cm3, Aex=1.3 µerg/cm, α=0.01,γ=17.6 MHz/Oe Simulation for nanoscale materials: Magnetic vortex 0 ns 0.4 ns 0.6 ns 0.8 ns 4.6 ns PEEM X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Simulated vortex core evolution Simulation size: 6 μm disk, movie zoomed in to 2.5 x 2.5 μm2 area centered along x, shifted up by 1.5 μm in y. X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Summary Fabrication Characterization Simulation X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
Summary and Acknowledgement • Dr. Stephanie I. LimHolly BrunnerBryn Mawr College • Dr. David Keavney Dr. Kristen Buchanan Argonne National Laboratory • Dr. Ming LuBrookhaven National Laboratory • Dr. C. L. Chien Dr. O. TchernyshyovJohns Hopkins University • Dr. V. I. Nikitenko Dr. A.J. ShapiroDr. R. ShullNational Institute of Standards and Technology XMC Group @ Bryn Mawr College Park 134-136 X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience
? X. M. Cheng, Bryn Mawr College Mini Symposium on Nanoscience