1 / 39

Name: Higher Level Mathematical Problem-Solving Exam | Date: [Date] | Time: 1 hour 30 minutes | Total Marks Available: 8

This Math exam contains challenging questions involving simultaneous equations, button packet quantities, foot length data analysis, and angle calculations. Test your problem-solving skills! |

Download Presentation

Name: Higher Level Mathematical Problem-Solving Exam | Date: [Date] | Time: 1 hour 30 minutes | Total Marks Available: 8

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Name: Paper 3 Higher Predicted Calculator Date: Time:1 hour 30 minutes Total marksavailable:80 Total marksachieved:

  2. Q1. Lizbuyspackets ofcolouredbuttons. There are 8redbuttonsin each packet ofredbuttons. There are 6silverbuttonsin eachpacketofsilverbuttons. There are 5goldbuttons in each packet of gold buttons. Lizbuysequal numbersofredbuttons, silverbuttonsandgoldbuttons. Howmanypacketsofeach colour ofbuttonsdidLizbuy? ........................................................... packetsof redbuttons ........................................................... packetsofsilverbuttons ........................................................... packetsof gold buttons (Totalforquestion= 3marks) Q2. Solve thesimultaneousequations 2x–4y= 19 3x+ 5y=1 x= ........................................................... y=........................................................... (Totalforquestion= 4marks)

  3. Q1. Lizbuyspackets ofcolouredbuttons. There are 8redbuttonsin each packet ofredbuttons. There are 6silverbuttonsin eachpacketofsilverbuttons. There are 5goldbuttons in each packet of gold buttons. Lizbuysequal numbersofredbuttons, silverbuttonsandgoldbuttons. Howmanypacketsofeach colour ofbuttonsdidLizbuy? 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 15 20 120 ÷ 8 = 15 120 ÷ 6 = 20 120 ÷ 5 = 24 ........................................................... packetsof redbuttons ........................................................... packetsofsilverbuttons 24 ........................................................... packetsof gold buttons (Totalforquestion= 3marks) Q2. Solve thesimultaneousequations 2x–4y= 19 3x+ 5y=1 6x-12y = 57 6x+10y= 2 -22y=55 y= -2.5 3x + - 12.5=1 3x = 13.5 x = 4.5 4.5 x= ........................................................... y=........................................................... -2.5 (Totalforquestion= 4marks)

  4. Q3. Thetable showssome information about thefootlengthsof40adults. (a) Writedown themodal class interval. ........................................................... (1) (b) Calculateanestimatefor themeanfoot length. ........................................................... cm (3) (Totalforquestion= 4marks) Q4. Thediagramshowsaregularoctagonandaregularhexagon.

  5. Q3. Thetable showssome information about thefootlengthsof40adults. (a) Writedown themodal class interval. 22≤f<24 ........................................................... (1) (b) Calculateanestimatefor themeanfoot length. (17 x 3)+(19 x 6)+(21 x 10)+(23 x 12)+(25x9) = 876 876÷40 = 21.9 21.9 ........................................................... cm (3) (Totalforquestion= 4marks) Q4. Thediagramshowsaregularoctagonandaregularhexagon.

  6. Find thesize oftheangle markedx You mustshowall your working. x=...........................................................º (Totalforquestion= 3marks) Q5. Steve is askedtosolve theequation5(x+ 2)= 47. Hereishisworking. 5(x+2) =47 5x+ 2=47 5x= 45 x= 9 Steve'sansweriswrong. (a)What mistake did hemake? ............................................................................................................................................. ............................................................................................................................................. (1) Liz isaskedtosolve theequation3x2+8= 83 Hereisherworking. 3x2+8= 83 x2=25 x= 5 3x2=75 (b) Explain whatiswrong with Liz'sanswer. ............................................................................................................................................. ............................................................................................................................................. (1) (Totalforquestion= 2marks)

  7. Find thesize oftheangle markedx You mustshowall your working. (8-2) x 180 = 1080 ÷8= 135 (6-2) x 180 = 720 ÷ 6 = 120 360 -135 – 120 = 105 105 x=...........................................................º (Totalforquestion= 3marks) Q5. Steve is askedtosolve theequation5(x+ 2)= 47. Hereishisworking. 5(x+2) =47 5x+ 2=47 5x= 45 x= 9 Steve'sansweriswrong. (a)What mistake did hemake? ............................................................................................................................................. ............................................................................................................................................. Expanded the brackets incorrectly should be 5x + 10 (1) Liz isaskedtosolve theequation3x2+8= 83 Hereisherworking. 3x2+8= 83 x2=25 x= 5 3x2=75 (b) Explain whatiswrong with Liz'sanswer. ............................................................................................................................................. ............................................................................................................................................. A square root has both positive and negative roots eg +5 and -5 (1) (Totalforquestion= 2marks)

  8. Q6. Thegroupedfrequencytable gives informationabout theheightsof30students. (a) Writedown themodal class interval. ........................................................... (1) Thisincorrect frequencypolygonhasbeendrawnfor theinformationinthetable. (b) Writedown two thingswrong with thisincorrect frequencypolygon. 1 ............................................................................................................................................. 2 ............................................................................................................................................. (2) (Totalforquestionis3marks)

  9. Q6. Thegroupedfrequencytable gives informationabout theheightsof30students. 160 < h ≤ 170 (a) Writedown themodal class interval. ........................................................... (1) Thisincorrect frequencypolygonhasbeendrawnfor theinformationinthetable. (b) Writedown two thingswrong with thisincorrect frequencypolygon. 1 ............................................................................................................................................. 2 ............................................................................................................................................. Points should be plotted at mid points Polygon should not be closed (2) (Totalforquestionis3marks)

  10. Q7. Thegraphshows thedepth,dcm, ofwaterina tankaftert seconds. (a) Findthegradient ofthisgraph. ........................................................... (2) (b) Explain whatthis gradientrepresents. ............................................................................................................................................. ............................................................................................................................................. (1) (Totalforquestionis3marks)

  11. Q7. Thegraphshows thedepth,dcm, ofwaterina tankaftert seconds. (a) Findthegradient ofthisgraph. 210 ÷ 140 = -1.5 ........................................................... (2) (b) Explain whatthis gradientrepresents. ............................................................................................................................................. ............................................................................................................................................. Rate of change of depth of water in the tank (1) (Totalforquestionis3marks)

  12. Q8. Herearetheequationsof four straight lines. LineA Line B Line C LineD y=2x+4 2y= x+4 2x+2y=4 2x− y=4 Two oftheselinesareparallel. Writedown thetwo parallel lines? Line ................................ and line................................ (Totalforquestionis1mark) Q9. ABCDisa rhombus. M is themidpoint ofBD. E is thepoint onBD such thatDE=CE. Calculatethesize ofangleMCE. (Totalforquestion= 3marks)

  13. Q8. A has gradient 2 B has gradient C has gradient 1 D has gradient 2 Herearetheequationsof four straight lines. LineA Line B Line C LineD y=2x+4 2y= x+4 2x+2y=4 2x− y=4 Two oftheselinesareparallel. Writedown thetwo parallel lines? a d Line ................................ and line................................ (Totalforquestionis1mark) Q9. ABCDisa rhombus. M is themidpoint ofBD. E is thepoint onBD such thatDE=CE. Calculatethesize ofangleMCE. EDC = (180-116) ÷ 2 = 32 MCE = 58 – 32 = 26 (Totalforquestion= 3marks)

  14. Q10. Thegraphofy= f(x) istransformedtogive thegraph ofy = −f(x+ 3) ThepointAonthegraphofy= f(x)ismappedto thepointPonthegraphofy= −f(x + 3) ThecoordinatesofpointA are(9, 1) Find thecoordinatesofpointP. (............................ , ............................) (Totalforquestionis2marks) Q11. Simplifyfully(√a+ √4b)(√a–2√b) ........................................................... (Totalforquestion= 3marks)

  15. Q10. Thegraphofy= f(x) istransformedtogive thegraph ofy = −f(x+ 3) ThepointAonthegraphofy= f(x)ismappedto thepointPonthegraphofy= −f(x + 3) ThecoordinatesofpointA are(9, 1) Find thecoordinatesofpointP. 9-3 =6 because of f(x+3) 1 becomes -1 because of –f(x) 6 -1 (............................ , ............................) (Totalforquestionis2marks) Q11. Simplifyfully(√a+ √4b)(√a–2√b) a – 2 √a√b+ √4b√a - √4b2√b a - 2 √a √b + 2 √a √b -2 √b2√b a – 4b a – 4b ........................................................... (Totalforquestion= 3marks)

  16. Q12. Sami asked50people which drinksthey likedfrom tea, coffeeandmilk. All 50people like at least one of thedrinks 19people likeall threedrinks. 16people liketeaandcoffeebut donotlikemilk. 21people likecoffeeandmilk. 24people liketeaandmilk. 40people likecoffee. 1 personlikesonlymilk. Sami selects at randomone ofthe50people. (a) Work out theprobabilitythatthispersonlikestea. ........................................................... (4) (b) Given that theperson selectedat random from the50people likestea, findtheprobabilitythat this personalsolikesexactly one otherdrink. ........................................................... (2) (Totalforquestion= 6marks)

  17. Q12. Sami asked50people which drinksthey likedfrom tea, coffeeandmilk. All 50people like at least one of thedrinks 19people likeall threedrinks. 16people liketeaandcoffeebut donotlikemilk. 21people likecoffeeandmilk. 24people liketeaandmilk. 40people likecoffee. 1 personlikesonlymilk. Sami selects at randomone ofthe50people. (a) Work out theprobabilitythatthispersonlikestea. t c 4 16 3 19 2 5 1 21-19 = 2 24 – 19 = 5 5+19+2+16+3+1 = 46 50 – 46 = 4 4+5+19+16 = 44 m ........................................................... (4) (b) Given that theperson selectedat random from the50people likestea, findtheprobabilitythat this personalsolikesexactly one otherdrink. 5 + 16 = 21 ........................................................... (2) (Totalforquestion= 6marks)

  18. Q13. Onthegrid, enlargethetriangle byscalefactor–1½,centre(0, 2) (Totalforquestion= 2marks)

  19. Q13. Onthegrid, enlargethetriangle byscalefactor–1½,centre(0, 2) (Totalforquestion= 2marks)

  20. Q14. Solvex2−5x+ 3=0 Give yoursolutions correct to 3significantfigures. ........................................................... (Totalforquestion= 3marks) Q15. (a) Showthat theequation3x2− x3+ 3=0canbe rearrangedtogive (2) (b) Using findthe valuesofx1,x2andx3 ........................................................... (3) (c) Explain whatthevaluesofx1,x2andx3represent. ............................................................................................................................................. ............................................................................................................................................. (1) (Totalforquestionis6marks)

  21. Q14. Solvex2−5x+ 3=0 Give yoursolutions correct to 3significantfigures. 4.30 or 0.697 ........................................................... (Totalforquestion= 3marks) Q15. (a) Showthat theequation3x2− x3+ 3=0canbe rearrangedtogive x³-3x²=3 x² (x-3)=3 x-3 = (2) (b) Using findthe valuesofx1,x2andx3 x₁ = 3.29296875 x₂ = 3.276659786 x₃ = 3.279420685 3.28 ........................................................... (3) (c) Explain whatthevaluesofx1,x2andx3represent. ............................................................................................................................................. ............................................................................................................................................. iteration is an estimate of the solution like trial and error (1) (Totalforquestionis6marks)

  22. Q16. Afrustumismadebyremovingasmall conefromalargecone asshown in thediagram. Thefrustumismadefrom glass. Theglass hasa densityof2.5g /cm3 Workout themassof thefrustum. Give youranswerto anappropriatedegreeofaccuracy. ...........................................................g (Totalforquestion= 5marks)

  23. Q16. Afrustumismadebyremovingasmall conefromalargecone asshown in thediagram. Thefrustumismadefrom glass. Theglass hasa densityof2.5g /cm3 Workout themassof thefrustum. Give youranswerto anappropriatedegreeofaccuracy. 15 ÷ 5 = 3 12 ÷ 3 = 4 radius of small cone is 2cm radius of large cone is 6cm x π x 2² x 5 = π 180π- π = 544.5427266 544.5427266 x 2.5 1361 ...........................................................g (Totalforquestion= 5marks)

  24. Q17. Thegraphshowsinformation about the velocity,vm/s,ofaparachutistt secondsafter leavingaplane. (a) Workout anestimatefor theaccelerationof theparachutist att = 6 ........................................................... m/s2 (2) (b) Workout anestimatefor thedistancefallenbytheparachutist inthefirst 12secondsafter leaving theplane. Use 3stripsofequal width. ........................................................... m (3) (Totalforquestionis5marks)

  25. Q17. Thegraphshowsinformation about the velocity,vm/s,ofaparachutistt secondsafter leavingaplane. (a) Workout anestimatefor theaccelerationof theparachutist att = 6 =3.5 ........................................................... m/s2 (2) (b) Workout anestimatefor thedistancefallenbytheparachutist inthefirst 12secondsafter leaving theplane. Use 3stripsofequal width. (4x35)÷2 +4x(35+51)÷2 + 4x(51+54)÷2= 452 ........................................................... m (3) (Totalforquestionis5marks)

  26. Q18. VABCDisa solid pyramid. ABCDisa squareofside 20cm. Theangle between anyslopingedgeandtheplaneABCDis55° Calculatethesurfacearea ofthepyramid. Give youranswercorrect to2 significantfigures. ...........................................................cm2 (Totalforquestion= 5marks)

  27. Q18. VABCDisa solid pyramid. ABCDisa squareofside 20cm. Theangle between anyslopingedgeandtheplaneABCDis55° Calculatethesurfacearea ofthepyramid. Give youranswercorrect to2 significantfigures. AC²=20²+20²=800 AX²=10²+10²=200 VX= √200 x tan 55=20.19… VM=√(20.19²+10²)=22.54 4xx22.54x20+20² = 1300 1300 ...........................................................cm2 (Totalforquestion= 5marks)

  28. Q19. (a) Expandand simplifyx(x+ 1)(x− 1) (2) Inalistofthreeconsecutivepositiveintegersatleastoneofthenumbersisevenandoneofthenumbersis a multiple of3 nisa positive integer greater than1 (b) Provethatn3− nisa multiple of6forall possible valuesofn. (2) 261−1 isa prime number. (c) Explain why261+1 is amultiple of3 (2) (Totalforquestion= 6marks)

  29. Q19. (a) Expandand simplifyx(x+ 1)(x− 1) x (x²-1) x³-x (2) Inalistofthreeconsecutivepositiveintegersatleastoneofthenumbersisevenandoneofthenumbersis a multiple of3 nisa positive integer greater than1 (b) Provethatn3− nisa multiple of6forall possible valuesofn. (n-1)n(n+1)=(n²-n)(n+1)=n³-n²+n²-n=n³-n n-1 and n and n+1 are consecutive numbers If middle one is even then the next one or previous one would be a multiple of three therefore a multiple of 6 (2) 261−1 isa prime number. (c) Explain why261+1 is amultiple of3 261−1 , 261 and 261+1 These are 3 consecutive numbers the first is odd as all prime numbers are odd except 2 so the next is even so the next is a multiple of 3 (2) (Totalforquestion= 6marks)

  30. Q20. IntriangleRPQ, RP =8.7 cm PQ =5.2 cm AnglePRQ = 32° (a) Assuming that anglePQRisanacuteangle, calculatetheareaoftriangleRPQ. Give youranswercorrect to3 significantfigures. ...........................................................cm2 (4) (b) IfyoudidnotknowthatanglePQRisanacuteangle,whateffectwouldthishaveonyourcalculationof theareaof triangleRPQ? ............................................................................................................................................. ............................................................................................................................................. (1) (Totalforquestion= 5marks) Q21. Herearethefirst five termsofanarithmeticsequence. 7 13 19 25 31 Prove that thedifferencebetween the squaresof anytwo termsofthesequence is alwaysa multiple of24 (Totalforquestionis6marks)

  31. Q20. IntriangleRPQ, RP =8.7 cm PQ =5.2 cm AnglePRQ = 32° (a) Assuming that anglePQRisanacuteangle, calculatetheareaoftriangleRPQ. Give youranswercorrect to3 significantfigures. Sin Q = x8.7 Q =62.4285… Angle RPQ = 180 -62-32=86 x8.7x5.2xsin 86 =22.56…. ..........................................................cm2 (4) (b) IfyoudidnotknowthatanglePQRisanacuteangle,whateffectwouldthishaveonyourcalculationof theareaof triangleRPQ? ............................................................................................................................................. ............................................................................................................................................. (1) (Totalforquestion= 5marks) If it were obtuse you would need to find the area of 2 triangles Q21. Herearethefirst five termsofanarithmeticsequence. 7 13 19 25 31 Prove that thedifferencebetween the squaresof anytwo termsofthesequence is alwaysa multiple of24 x²- y 6m+1 and 6n+1 are two terms in the sequence (6m+1)²-(6n+1)²=36m²+12m+1-36n²-12n-1 36(m²-n²)+12(m-n) 3(m²-n²)+(m-n) (n-m)(3(n+m)+1 (Totalforquestionis6marks)

  32. MarkScheme Q1. Q2. Q3. Q4.

  33. Q5. Q6. Q7.

  34. Q8. Q9. Q10.

  35. Q11. Q12. Q13.

  36. Q14. Q15. Q16.

  37. Q17. Q18.

  38. Q19.

  39. Q20. Q21.

More Related