1 / 28

1 Korea Institute of Energy Research

Electrochemical synthesis of ammonia from steam and nitrogen using an oxygen-ion conducting electrolyte. Jong Hoon Joo , Hyung Chul Yoon, Hana Jeoung, Ji Haeng Yu, Jong-Nam Kim, Young Min Woo, Jin Young Jang.

dea
Download Presentation

1 Korea Institute of Energy Research

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electrochemical synthesis of ammonia from steam and nitrogen using an oxygen-ion conducting electrolyte Jong Hoon Joo, Hyung Chul Yoon, Hana Jeoung, Ji Haeng Yu, Jong-Nam Kim, Young Min Woo, Jin Young Jang KoreaInstituteofEnergy Research(KIER), Daejeon,SouthKorea 1 Korea Institute of Energy Research

  2. Overview • Hydrogen manufacturing by Solid Oxide Electrolysis Cells (SOECs) • Ammonia manufacturing by Solid Oxide Electrolysis Cells (SOECs) • Electrochemical synthesis of ammonia from steam and nitrogen using an oxygen-ion conducting electrolyte KoreaInstituteofEnergy Research

  3. Introduction SOECs SOFCs Fuel(H2) Steamrich + H2 O2 Air(O2) H2O H2rich +Steam, SolidOxide FuelCells(SOFCs) SolidOxideElectrolysisCells(SOECs) Anode RXN Cathode RXN Overall RXN H2O + 2e- → H2 + O2- O2- → ½O2 +2e- H2O → H2 + ½O2 Endothermic (ΔH < 0) H2 + O2- → H2O + 2e- ½O2 + 2e- → O2- H2 + ½O2 → H2O Exothermic (ΔH > 0) Reactionheat KoreaInstituteofEnergy Research

  4. Thermodynamicaspects ► Energy requirements for electrolysis SOEC operating temp. (600-1000oC) Steam electrolysis ? Why??? ∆G= ∆ H-T ∆ S • S. Herring (INL), 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Review • ▫ Overall thermal-to-hydrogen efficiency > 50% • ▫ Electrical energy requirements for electrolysis < • HTE:~34kWh/kg Conventional:~50kWh/kg KoreaInstituteofEnergy Research

  5. Oxygenionconductingelectrolyte - ElectrolyteMaterialsforSOFC/SOEC 900 800 700 600(oC) ElectricalConductivity(S/cm) ScSZ(Scandiastabilizedzirconia) 0.1 YSZ (Yttriastabilizedzirconia) 0.01 0.8 0.9 1.0 1000/T(K-1) 1.1 1.2 [1] B.C.H. Steele,Nature414(2001)345 KoreaInstituteofEnergy Research

  6. Buttoncell tests LSM LSM-YSZ YSZ NiO-YSZ • ▫ Button cell • active area: 0.5 ~ 1.0 cm2 • cell thickness: 1 mm • sealing materials: Pyrex Buttoncelltestunit KoreaInstituteofEnergy Research

  7. Buttoncell tests(SOEC) 1.5 YSZ (850oC) ScSZ (850oC) ScSZ (800oC) ScSZ (650 C) o CellVoltage/V 1.0 0.5 SOEC mode SOFCmode 50%HO 2 0.0 -1 0 1 CurrentDensity/Acm-2 2 Polarizationresistance:SOECmode>SOFCmode Korea Institute of Energy Research 7

  8. Current-voltagecharacteristics ► Button cell I-V tests From Faraday’slaw, Hydrogenproductionrate is 𝐼�𝑚𝐻2 �̇ = 𝑛� 3 −1 ≅ 1 𝐶∙ 𝑠𝑠𝑠−1 × 22400 𝑠𝑚 ∙ 𝑚𝑚� �̇ SOFCmode 2 × 96485 𝐶∙ 𝑚𝑚�−1 SOEC mode = 0.116 𝑠𝑚3 ∙ 𝑠𝑠𝑠−1 𝑚≅ 0.116 × � 𝐼𝑑𝑑 ▫ Hydrogen production rate : 8.3 cc/min∙cm2 ▫ Over 30% steam content is required. @1.3V (~ 100%currentefficiency) KoreaInstituteofEnergy Research

  9. Operationconditions ► Button cell operating conditions • ▫ I-V results: • High steam content high performance • No significant differences in H2 production rate with steam content at low temp • ▫ Impedance results: • Resistances decrease with temperature. • Rc - strong dependence on steam content • Rohm – no connection with steam content KoreaInstituteofEnergy Research

  10. Stackdesign • Manifold glass sealing • H2O (rich) + H2 (lean) • Stack structures • H2O (lean) + H2 (rich) • ▫ Characteristics of KIER flat-tubular cell stack • All-ceramic stack (ceramic interconnector all-in-one) • Highmechanicalstrength • Minimumsealingareaandmanifold • Minimumstackvolume • Enhancedactivearea KoreaInstituteofEnergy Research

  11. Processing Extrusion Machinework Dip-coating Spray-coating Sintering Manufacturingstep Flat-tubularsinglecells Stackmodule KoreaInstituteofEnergy Research

  12. Stackdevelopment • Stackdevelopment KoreaInstituteofEnergy Research

  13. Ammoniaasanenergycarrier • While the introduction of a hydrogen economy has its merits, the associated problems with on-board hydrogen storage are still a barrier to realization. • Ammonia and related chemicals can provide an alternative energy vector. -Haber-Boschprocess(250bar, 450oC) N2(g) +3H2 (g)2NH3 (g) Energyconsumption:36.GJ/ton NH3 -Solid-stateelectrochemicalprocess(1bar,300-700oC) 3H2O(g) + N2(g)2NH3 +3/2O2(g) 26GJ/ton NH3 Overallcostreduction:1/2ofthecurrentpriceofNH3 [2] [2]J.Holbrook,Ammonia:ThePromiseofGreenFuel, Spring2008 KoreaInstituteofEnergy Research

  14. Energydensity Fig.1. Volumetricversusgravimetricenergydensityofthemostimportantenergycarriers [3] -Onlyammoniaandhydridesexhibitanenergydensityclosetofossilfuelssuchas coalandoil,muchhigherthancompressedhydrogen. KoreaInstituteofEnergy Research [3]A.Zutteletal.,Philos.Trans.R Soc.A-Math Phys.Eng. Sci.(2010)

  15. SolidStateAmmoniaSynthesis • SolidStateAmmoniaSynthesis(SSAS)using H2andN2 • H2 • e- H+ Proton conductor N2 NH3 • Proton conductor electrolyte • Perovskite: SrCeO3, BaZrO3, CaZrO3, BaCeO3, SrZrO3 et al. Pyrochlore: La2Zr2O7, La2Ce2O7 et al. Polymer:Nafionetal. KoreaInstituteofEnergy Research

  16. SolidStateAmmonia Synthesis usingH2 and N2 • SummaryoftheSSASusingH2 andN2 [4]A.Ibrahimet al.,J.SolidStateElectrochem.(2011) KoreaInstituteofEnergy Research

  17. SolidStateAmmonia Synthesis usingH2O and N2 • Usingsteaminsteadofhydrogencost saving(productionandpurification) • Oxygenionconductor 2.Proton conductor Air H2O e- e- H+ O2- N2 2NH3 3H2O 6H+ +3/2O2 + 6e- - Drawbacks of proton conducting oxides: High sintering temp. (BaZrO3 ~ 1700 oC) Formation of secondary phases (phase instability) High grain boundary resistance 3H2O+N2 3O2- 3/2O2+6e- 2NH3 3H2O+N2 +6e-3O2-+2NH3 KoreaInstituteofEnergy Research

  18. Experimental e- Electrodes: Pt or (LSF)La0.6Sr0.4FeO3-(GDC)Ce0.9Gd0.1O2-δ Electrolyte : O2- ion conductor (3YSZ, t: 90 ㎛) O2- NH3 +H2O+N2 +H2 H2O+N2 Overallcellreaction:3H2O+N2 2NH3 + 3/2O2 - N2 (50cc/min) +3%H2O - Electrodearea:1cm2 - Measuringtemperature:500-660oC • Electrochemicaltest • Current-voltagecharacteristic • Impedancespectroscopy KoreaInstituteofEnergy Research

  19. Analysisofammoniaformation • IndophenolBlueMethod • Phenol:1ml • Sodiumnitroprusside:1ml • Alkalinecitrate+Sodiumhypochlorite:2.5ml • Ammoniacollectionquantifiedbybubblingthroughsolution. • Analyzedbyspectrophotometer Standard Curve 1.474 Range:0.01-1.5mg/L :0.01-10ppm 1.000 Abs. 0.500 Error: ±0.013 mg/L (95% confidence level) 0.000 -0.134 0.000 0.500 y = 0.89441 x + 0.00000 Correlation Coef f icient r2 = 0.99929 Multiple Correlation Coef f icient r2 = 0.99929 1.000 1.500 Conc.(mg/l) KoreaInstituteofEnergy Research

  20. Mixedconductingperovskite • Mixed ionic electronic conductor • Mixed conducting perovskites contain alkaline earth and rare earth cations on the A-site and a transition metal on the B-site. • For examples, La0.6Sr0.4CoO3-δ has a high ionic conductivity (≈ • 0.1 S/cm , δ ≈ 0.1 at 800 oC in 1 atm O2) caused by oxygen vacancy. <Idealcubicperovskitestructure> KoreaInstituteofEnergy Research

  21. Mixedconductingperovskite • ElectrodeReactions - Electronicconductor: Pt - Mixed conductor : (La,Sr)FeO3-δ • Three-phase boundary (gas, electron,ion) area in electrodes is important for the oxygen ion transport. • Polarization resistance: Pt > Mixed conducting perovskite KoreaInstituteofEnergy Research

  22. ImpedancespectraatOCV 200 660oC Pt electrodes 150 12Hz -Z''(Ω) 100 50 0.8Hz LSF-GDCelectrodes 0 0 50 100 150 200 250 Z'(Ω) 300 350 400 • Anode:air • Cathode:N2 (50cc/min) + 3%H2O KoreaInstituteofEnergy Research

  23. Current-voltagecharacteristics 1.0 1.0 660oC 660oC 0.8 0.8 Voltage(V) Voltage(V) 0.6 0.6 0.4 0.4 0.2 0.2 Pt electrodes LSF-GDCelectrodes 0.0 0.0 - LSF-GDC electrodeHighercurrentcanbeapplied. KoreaInstituteofEnergy Research

  24. Current-voltagecharacteristics 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 o o 500 C 500 C Voltage(V) Voltage(V) Pt electrode LSF-GDCelectrode - LSF- GDC electrode80timeshighercurrentthan Pt at500oC KoreaInstituteofEnergy Research

  25. Dependenceofammoniaproductionrateontheappliedcurrent 660oC 660oC 2.0x10-10 2.0x10-10 Ammoniasynthesisrate(mol/sec) Ammoniasynthesisrate(mol/sec) LSF-GDCelectrode Pt electrode 1.5x10-10 1.5x10-10 1.0x10-10 1.0x10-10 5.0x10-11 5.0x10-11 • 0.0 0.0 • 0.0 0.1 0.2 0.3 0.4 0.5 0.6 • Current (mA) • Ammonia production rate • - Pt-YSZ-Pt 1.2ⅹ 10-10 mol/cm2∙sec at 660 oC 0 2 4 6 Current(mA) 8 10 - LSF-GDC/YSZ/LSF-GDC 1.7ⅹ 10-10 mol/cm2∙sec at 660 oC • Pd-SCY-Ru 9.1ⅹ 10-14 mol/cm2∙sec • Pt-Nafion-Ru 2.1ⅹ 10-11 mol/cm2∙sec • [5] A. Skodra et al., Solid State Ionics (2009) [6] V. Kordali et al., Chem. Commun. (2000) at650oC[5] at90oC[6] Thereareonlytwoliteraturedata(usingH2OandN2) KoreaInstituteofEnergy Research

  26. Dependenceofammoniaproductionrateontheappliedcurrent • Ammonia production rate • - Pt-YSZ-Pt 1.2ⅹ 10-10 mol/cm2∙sec at 0.4 mA • Theoretical value (Faraday’s law ) : 1.4ⅹ 10-9 mol/cm2∙sec at 0.4 mA 𝑚𝑚�𝑚𝑚𝑚𝑚�𝑣𝑚𝑣𝑚𝑚� ≈ 8.6% 𝑡𝑡𝑚𝑡𝑚𝑚𝑡𝑡𝑡𝑚𝑣𝑣𝑚𝑣𝑚𝑚� - LSF-GDC/YSZ/LSF-GDC 1.7ⅹ 10-10 mol/cm2∙sec at 9 mA Theoretical value: 3.1ⅹ 10-8 mol/cm2∙sec at 9 mA 𝑚𝑚�𝑚𝑚𝑚𝑚� 𝑣𝑚𝑣𝑚𝑚� 𝑡𝑡𝑚𝑡𝑚𝑚𝑡𝑡𝑡𝑚𝑣𝑣𝑚𝑣𝑚𝑚� ≈0.6% • Conversionrateshouldbe increased. KoreaInstituteofEnergy Research

  27. Conclusions • Ammonia is synthesized from steam and nitrogen by using oxygen ion conducting electrolyte. • The maximum rate of ammonia production is 1.7ⅹ 10-10 mol/cm2∙sec with perovskite electrode. • about 2000 times larger than reported value (Pd-SCY-Ru) • about 10 times larger than reported value (Pt-Nafion-Ru) • Further study is necessary to enhance the ammonia formation rate. • - Reaction mechanism (N2 dissociation et al.) • - Factors affecting the rate of ammonia formation (temperature, catalysis, conductivity) KoreaInstituteofEnergy Research

  28. Thankyouforyourattention!! KoreaInstituteofEnergy Research

More Related