1 / 8

RESISTENCIA. Tracción y Compresión I

RESISTENCIA. Tracción y Compresión I. Tracción y compresión monoaxial. Definición. Recordemos la relación entre tensiones y esfuerzos internos.

dermot
Download Presentation

RESISTENCIA. Tracción y Compresión I

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RESISTENCIA. Tracción y Compresión I • Tracción y compresión monoaxial. Definición. Recordemos la relación entre tensiones y esfuerzos internos. Diremos que un prisma mecánico esta sometido a tracción o compresión monoaxial cuando al cortarlo por cualquiera de sus secciones, perpendiculares a la línea media, la resultante de las tensiones solo tiene componente perpendicular a la sección (N) siendo nulas las demás y también el momento resultante es decir: Estas condiciones no son suficientes para determinar las tensiones debidas a N. Se necesitan hipótesis adicionales. Hipótesis de Bernouilli.- Las secciones planas antes de la deformación se mantienen planas después de la deformación y paralelas a si mismas. Esta hipótesis implica: a) Tensiones cortantes nulas ; b) Tensiones normales ctes en la sección

  2. RESISTENCIA. Tracción y Compresión I • Diagrama de esfuerzos normales. En general el Esfuerzo Normal depende de la sección del prisma mecánico considerada, lo mismo que el área de la sección. Si “s” es la coordenada que me dice en que sección estoy será: La representación gráfica de la función N(s) es el diagrama de solicitaciones normales, y la de la función snx (s) es el de tensiones normales. Cuando el prisma mecánico es recto la coordenada genérica “s” pasa a ser “x” EJEMPLO

  3. RESISTENCIA. Tracción y Compresión I • Tensiones y deformaciones en la tracción monoaxial. Puesto que la única tensión distinta de cero es snx, la matriz de tensiones, válida en todos los puntos es: Mediante la matriz de tensiones se puede calcular el vector tensión para cualquier plano. Las leyes de Hooke generalizadas dan en este caso, para las deformaciones: (s = x) Las deformaciones en general serán funciones de “x” lo mismo que las tensiones. La representa-ción gráfica de estas funciones son los diagramas de deformaciones.

  4. RESISTENCIA. Tracción y Compresión I Deformación de un elemento de longitud “dx” Desplazamientos. Debido a las deformaciones, una sección cualquiera tendrá un desplazamiento respecto de una sección fija. Consideramos una sección a distancia “x” de la sección fija, su desplazamiento será la suma de las deformaciones de todas las rebanadas infinitesimales que hay entre la sección fija y ella. Desplazamiento de un elemento a distancia “x”. Diagrama de desplazamientos: Representación gráfica de la función u(x). En general no coincide con el de deformaciones. Deformación total de una barra de longitud “L” = Desplazamiento de su extremo libre Si N(x) =cte y W(x) = cte

  5. Esfuerzo: Deformación : Desplazamiento: Tensión: X=0 RESISTENCIA. Tracción y Compresión I • Tensiones y deformaciones debidas al peso propio. Consideremos una barra de sección cte. sobre la que actúa solo su propio peso (densidad g).

  6. Peso de la barra Tensiones Deformaciones Deformación total = desplazamiento del extremo RESISTENCIA. Tracción y Compresión I • Peso Propio. Cálculo simplificado. El efecto del peso propio pude abordarse de forma simplificada, suponiendo aplicado el peso total del prisma “P” en su c.d.g. Aunque los valores en los extremos coinciden, los diagramas son diferentes, por lo que este método es valido únicamente para calcular los valores en los extremos.

  7. Incremento de carga Peso rebanada RESISTENCIA. Tracción y Compresión I Condición: Peso rebanada = Incremento de carga Si “dx” es muy pequeño puede despreciarse el peso de las zonas rayadas. • Sólido de igual resistencia. Las tensiones van aumentando hacia el empotramiento. Para idealizar el diseño, cuando el peso propio es importante, hemos de variar la sección para conseguir que en todas las secciones sea: s = se = cte.

  8. Única tensión distinta de cero RESISTENCIA. Tracción y Compresión I • Energía de Deformación en Tracción y compresión monoaxial. Utilizando la expresión que da la energía de deformación en función de los términos de la matriz de tensiones y teniendo en cuenta que: Sustituyendo Para integrar la última expresión es necesario conocer las leyes que dan N(x) y W(x). En el supuesto que: N(x) = cte = N y W(x) = cte = W se tiene:

More Related