1 / 60

La “crisi” della Fisica Classica Alcune situazioni sperimentali in cui la Fisica “Classica" fallisce

Radiazione di corpo nero. Effetto fotoelettrico. Proprietà ondulatorie degli elettroni . Linee spettrali atomiche. La “crisi” della Fisica Classica Alcune situazioni sperimentali in cui la Fisica “Classica" fallisce. Le cure arrivano da idee intrinsicamente quantistiche :.

devona
Download Presentation

La “crisi” della Fisica Classica Alcune situazioni sperimentali in cui la Fisica “Classica" fallisce

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Radiazione di corpo nero Effetto fotoelettrico Proprietà ondulatorie degli elettroni Linee spettrali atomiche La “crisi” della Fisica Classica Alcune situazioni sperimentali in cui la Fisica “Classica" fallisce Le cure arrivano da idee intrinsicamente quantistiche:

  2. La radiazione di Corpo Nero La “Radiazione di Corpo Nero” o di "cavità” si riferisce ad un oggetto che assorbe tutta la radiazione incidente su di esso e ri-irraggia energia che è caratteristica del suo solo sistema irraggiante, e non dipende dal tipo di radiazione incidente. L’energia irradiata può essere considerata come prodotta da onde stazionarie, o modi risonanti, della cavità che irraggia. modi di radiazione La quantità di radiazione emessa in una certa banda di frequenze dovrebbe essere proporzionale al numero di modi in quella banda. Secondo la Fisica Classica tutti i modi hanno la stessa probabilità di essere prodotti, ed il numero di modi possibili nella cavità cresce con il quadrato della frequenza. Tuttavia, la continua crescita di energia emessa con la frequenza (denominata "ultraviolet catastrophe") non avviene. La Natura è più saggia.

  3. La nascita della Meccanica Quantistica L’espressione quantistica della energia media per modo si ottiene partendo dalla ipotesi diPlanck:tutta la radiazione elettromagnetica èquantizzata e l’emissione avviene per “quanti di energia”, che chiamiamo fotoni. Il quanto di energia di un fotone è dato dal prodotto della costante di Planck h per la frequenza. Questa quantizzazione implica che un fotone di luce, di data frequenza e lunghezza d’onda, ha una energia quantistica fissata. Per esempio, un fotone di luce blu, che ha una lunghezza d’onda di 450 nm, avrà sempre una energia di 2.76 eV. Tutta la luce blu è formata da fotoni di questa energia, e trasporta energia in multipli di 2.76 eV. Non si può avere un mezzo fotone blu.

  4. Energia massima e minima, Meccanica Quantistica e Meccanica Classica La frequenza disponibile è continua, senza limiti superiori o inferiori; quindi non vi alcuna restrizione circa la possibile energia di un fotone. Per quanto riguarda le energie alte, un limite pratico è semplicemente dovuto alla difficoltà di trovare meccanismi per la creazione di fotoni ad altissima energia. I fotoni di bassa energia invece abbondano; tuttavia, quando si scende sotto il limite delle frequenze radio, le energie dei fotoni sono così piccole, confrontate con le energie termiche a temperatura ambiente, che non si potranno mai isolare come singole entità quantizzate. Si perdono semplicemente nella energia di fondo presente. In altre parole, nel limite di basse frequenze la trattazione della radiazione elettromagnetica si fonde con la descrizione classica ed una trattazione quantistica non è più necessaria.

  5. Densità di energia del Corpo Nero in funzione della frequenza Energia per unità di volume e di frequenza k = costante di Boltzman

  6. Rayleigh-Jeans vs Planck Confronto tra la legge classica di Rayleigh-Jeans e la formula della radiazione quantistica di Planck. L’ esperimento conferma la relazione di Planck.

  7. Curve di Radiazione

  8. L’effetto fotoelettrico Gli aspetti incomprensibili dell’effetto fotoelettrico quando si incominciò ad osservarlo erano: 1. Gli elettroni venivano emessi immediatamente - nessun ritardo! 2. Un aumento della intensità della luce causava un aumento del numero di fotoelettroni, ma non della loro energia cinetica! 3. La luce rossa non provoca emissione di elettroni, qualunque sia la sua intensità! Le caratteristiche dell’effetto fotoelttrico erano in netta contraddizione con le predizioni della Fisica Classica. La spiegazione dell’effetto segnò uno dei passi fondamentali verso la Teoria dei Quanti. 4. Una debola luce violetta causa l’emissione di pochi elettroni, ma la loro energia cinetica è maggiore di quella ottenuta con luce più intensa di frequenza minore!

  9. L’effetto fotoelettrico L’analisi dei dati dell’effetto fotoelettrico mostrò che l’energia degli elettroni emessi era proporzionale alla frequenza della luce incidente. Ciò mostrava che qualunque “cosa” estraesse gli elettroni dal metallo aveva un’energia proporzionale alla frequenza della luce. Il fatto sorprendente che l’energia dei singoli elettroni fosse indipendente dalla energia totale della luce incidente (cioè l’intensità), mostrava che l’interazione della luce con il metallo deve essere come quella di una singola particella che cede la sua energia all’elettrone. Ciò è consistente con l’ipotesi di Planck, da lui applicata al problema della radiazione del Corpo Nero, secondo cui la luce è formata da quanti discreti (fotoni), ciascuno con energia:

  10. I fenomeni luminosi più comuni possono essere spiegati e descritti mediante la natura ondulatoria della luce. Invece, l’effetto fotoelettrico suggerisce una natura corpuscolare della luce.

  11. Il problema degli spettri atomici Negli anni alla fine del 1900, si osservò che la luce emessa da gas luminosi non mostrava una distribuzione continua di lunghezze d’onda, ma formava un insiemediscretodi colori, diversi per i vari gas. Queste "linee spettrali" si disponevano in una serie regolare e si giungerà ad interpretarle come transizioni tra livelli atomici di energia. Allora, rappresentavano un grosso problema per la Fisica Classica. Si sapeva che particelle cariche accelerate emettono onde elettromagnetiche, e ci si aspettava che orbite di elettroni intorno ai nuclei fossero instabili, in quanto, a causa della perdita di energia elettromagnetica emessa, sarebbero stati attratti dal nucleo. Non si poteva trovare alcun modello classico che portasse ad orbite stabili degli elettroni. Il modello atomico di Bohrsegnò il passo fondamentale verso una moderna teoria atomica. Il punto fondamentale fu il postulato che il momento angolare è quantizzato, permettendo di ottenere solo specifici livelli di energia. In seguito, lo sviluppo della Meccanica Quantistica e l’equazione di Schrödinger permisero di comprendere i postulati ed I risultati del modello all’interno di una teoria completa e consistente. Helium spectrum Hydrogen spectrum interi RH, costante di Rydberg = 1.097 10–7 m–1

  12. Il modello atomico di Boh – Orbita classica dell’elettrone Nel modello di Bohr, questo risultato classico fu combinato con la quantizzazione del momento angolare, per ottenere un’espressione dei livelli quantizzati di energia.

  13. La quantizzazione del momentoangolare Nel modello di Bohr la lunghezza d’onda associata all’elettrone è data dalla relazione di de Broglie (si vedano le trasparenze successive) a cui si unisce la condizione di stazionarietà: lunghezza della circonferenza = numero intero di lunghezze d’onda Queste due condizioni si combinano per dare l’espressione quantizzata del momento angolare per l’elettrone in orbita: Quindi L non solo è conservato (non dipende dal tempo), ma è costretto ad assumere valori discreti, multipli di h/2π secondo il numero quantico n. Questa quantizzazione del momento angolare è un risultato fondamentalee può essere usato per determinare I raggi e le energie delle orbite di Bohr.

  14. vale per atomi idrogenoidi: Z protoni e 1 elettrone energia cineticadell’elettrone energia cinetica orbitale classica espressa in funzione del momento angolare uso della condizione di quantizzazione Combinando il procedimento seguito nel caso classico con la quantizzazione del momento angolare,l’approccio di Bohr fornisce le espressioni per i raggi e le energie delle orbite degli elettroni: da queste espressioni si ricava: n = 1,2,3,… a0 = 0.529 10–10m = raggio di Bohr

  15. Livelli di energia dell’atomo di idrogeno I livelli di energia dell’atomo di idrogeno sono in accordo con quelli del modello di Bohr. La descrizione pittorica usuale è quella di una struttura ad orbite (o gusci), con ogni orbita associata ad uno dei valori del numero quantico principale n. La descrizione dell’atomo tramite le orbite del modello di Bohr è una utile visualizzazione; non bisogna tuttavia dimenticare che, come risulterà dalla Meccanica Quantistica, i concetti di orbita e raggio orbitale saranno sostituiti da concetti quali la distribuzione di probabilità di posizione.

  16. Il modello di Bohr prevede che gli elettroni occupino una delle possibili orbite quantizzate, senza emissione di onde elettromagnetiche. L’emissione avviene quando l’elettrone passa da un’orbita all’altra; in questa transizione avviene l’emissione di un fotone di energia pari alla differenza di energia tra le due orbite. Dall’espressione dei livelli quantizzati di energia si ha Questa relazione può essere scritta come con

  17. Le debolezze del modello di Bohr Anche se il modello di Bohr rappresentò un passo avanti fondamentale verso la costruzione della teoria quantistica degli atomi, non rappresenta in realtà la corretta descrizione teorica della natura delle orbite elettroniche. Le sue principali manchevolezze sono: 1. Non permette di capire perché certe linee spettrali sono più luminose di altre. Non vi è alcun meccanismo che permetta di calcolare la probabilità di transizione tra livelli atomici. 2. Il modello di Bohr considera gli elettroni come pianeti in miniatura, in rotazione intorno al nucleo con un ben preciso raggio ed impulso. Questo viola il principio di indeterminazione, secondo cui posizione ed impulso non possono essere esattamente determinati contemporaneamente. Il modello di Bohr ci fornisce un modello concettualmente semplice e fondamentale delle orbite e delle energie degli elettroni atomici. I dettagli dello spettro e della distribuzione di cariche sono ottenibili solo dai calcoli della Meccanica Quantistica e dell’equazione di Schrödinger. Molti dei risultati del modello di Bohr (compresa la sua ipotesi di quantizzazione ) saranno ritrovati all’interno di una teoria completa e consistente.

  18. La natura particellare della luce – Lo scattering Compton Compton osservò la deflessione di raggi X da parte di elettroni, trovando che i raggi X deflessi avevano una lunghezza d’onda più grande di quella dei raggi incideni. La variazione della lunghezza d’onda aumentava con l’angolo di deflessione, secondo la formula (di Compton): Compton spiegò i dati assumendo una natura particellare della luce (fotoni) ed applicando la coservazione dell’energia e dell’impulso alla collisione tra un fotone e l’elettrone. Il fotone deflesso ha un’energia minore e quindi una maggiore lunghezza d’onda, secondo la relazione di Planck.

  19. L’espressione precedente per Δλpuò essere ottenuta imponendo la conservazione dell’energia e dell’impulso: conservazione dell’energia conservazione dell’impulso

  20. La natura ondulatoria dell’elettrone Giovane studente a Parigi, Louis DeBroglie aveva appreso la relatività e l’effetto fotoelettrico. Quest’ultimo evidenziava la natura corpuscolare della luce, da sempre considerata un fenomeno ondulatorio. Egli si chiese se gli elettroni ed altre "particelle" potessero a loro volta esibire proprietà ondulatorie. Questo condurrà ad una nuova teoria. La conferma dell’ipotesi di DeBroglie arrivò grazie all’esperimento di Davisson- Germer. Esso mostrò figure di interferenza – in accordo con la lunghezza d’onda di DeBroglie – per l’urto di elettroni su cristalli di nickel.

  21. Quando i raggi X sono deflessi dal reticolo cristallino, si osservano picchi di intensità finale corrispondenti alla condizione di Bragg, secondo cui si hanno massimi quando la differenza di cammino di due raggi è uguale ad un multiplo intero della lunghezza d’onda. Tale formula può essere usata in più modi: conoscendo d e misurando theta, si ricava lambda, oppure conoscendo lambda si ricava d. Simili figure di interferenza furono osservate con elettroni. L’energia degli elettroni, e quindi la loro lunghezza d’onda, può essere variata, variando il potenziale di accelerazione. L’esperimento di Davisson-Germerdimostrò che anche glielettroni presentano fenomeni ondulatori, in accordo con la lunghezza d’onda di DeBroglie: lunghezza d’onda di un elettrone di impulsop

  22. La lunghezza d’onda di DeBroglie

  23. Refessione Rifrazione Interferenza Diffrazione Polarizzazione Effetto fotoelettrico Compton scattering La dualità Onda-Particella per la luce La luce consiste di particelle o di onde? La risposta dipende dai tipi di fenomeni che si osservano: I più comuni fenomeni luminosi osservati possono essere spiegati come fenomeni ondulatori. Tuttavia l’effetto fotoelettrico e lo scattering Compton suggerirono una natura particellare per la luce. Lo stesso dualismo onda-particella fu osservato anche per gli elettroni.

  24. La funzione d’onda Ogni particella è rappresentata da una funzione d’ondaΨ (x,t) tale cheΨ* Ψè la probabilità di trovare la particella nel punto x al tempo t. La funzione d’onda è soluzione dell’equazione di Schrödinger. Questa equazione gioca lo stesso ruolo della legge di Newton e della conservazione dell’energia nella Meccanica Classica, cioè predice il comportamento futuro di un sistema dinamico. Predice analiticamente e precisamente le probabilità di eventi e risultati futuri. I dettagli dei risultati dipendono dal caso, ma, per un grande numero di eventi, l’equazione di Schrödinger, predirrà la loro distribuzione statistica.

  25. Le proprietà della funzione d’onda contiene tutte le informazioni fisiche (misurabili) sulla particella se la particella esiste, la probabilità totale di trovarla è 1 è continua(insieme alla sua derivata) permette il calcolo del valore medio (valore di aspettazione) di qualunque grandezza fisica Per una particella libera è un’onda piana; ciò implica un preciso valorep dell’impulso e p2/2mdell’energia, ed una totale incertezza nella posizione

  26. L’equazione di Schrödinger L’energia cinetica e potenziale sono trasformate nell’operatore Hamiltoniano, che agisce sulla funzione d’onda per generarne l’evoluzione nello spazio e nel tempo. L’equazione di Schrödinger dà l’energia quantizzata del sistema (i possibili valori di E) e la forma della funzione d’onda, a partire dalla quale altre proprietà fisiche possono essere calcolate.

  27. L’equazione di Schrödinger indipendente dal tempo Per un potenziale generico U l’equazione di Schrödinger unidimensionale ed indipendente dal tempo è In 3 dimensioni assume la forma per coordinate cartesiane. Può essere scritta in modo più compatto, introducendo l’operatore Laplaciano L’equazione di Schrodinger può quindi essere scritta come:

  28. L’equazione di Schrödinger dipendente dal tempo L’equazione di Schrödinger dipendente dal tempo, in una dimensione spaziale, ha la forma Per una particella libera , per la quale U(x) =0, la funzione d’onda, soluzione dell’equazione, può essere scritta come un’onda piana Per altri problemi, cioè per particelle soggette ad una forza, il potenziale non nullo rende la soluzione più difficile. La dipendenza spaziale della funzione d’onda è fissata dall’equazione di Schrödinger indipendente dal tempo mentre l’evoluzione temporale da quella dipendente dal tempo

  29. I postulati della Meccanica Quantistica 1. Il postulato della Funzione d’Onda: Associata ad ogni particella che si muove in un campo di forze conservative vi è una funzione d’onda, la quale determina tutte le informazioni ottenibili sul sistema. Ad ogni sistema fisico formato da una particella è associata una funzione d’onda. Questa funzione d’onda permette di ottenere tutte le informazioni possibili sul sistema. La funzione d’onda può anche essere complessa; è il prodotto con la funzione complessa coniugata che specifica la vera probabilità fisica di trovare la particella in un certo stato. ampiezza di probabilità, calcolata inx ,t probabilità di trovare la particella inx ,t

  30. Probabilità in Meccanica Quantistica La funzione d’onda rappresenta l’ampiezza di probabilità di trovare la particella in un certo punto dello spazio, ad un certo istante. La vera probabilità di trovare la particella è data dal prodotto della funzione d’onda (che può essere un numero complesso) con il suo complesso coniugato; il risultato è sempre un numero reale (l’analogo del quadrato, per una funzione complessa). Poiché la probabilità totale di trovare la particella da qualche parte deve essere = 1, la funzione d’onda deve essere normalizzata. Cioè la somma delle probabilità, estesa a tutto lo spazio, deve essere 1. Ciò si esprime tramite l’integrale: Volume infinitesimo La richiesta di avere funzioni d’onda normalizzabili svolge un ruolo molto importante nella ricerca delle soluzioni dell’equazione di Schrödinger. Ad esempio, si può trovare che solo certi valori dell’energia permettono di ottenere soluzioni normalizzabili.

  31. 2. Il postulato degli operatori associati a grandezze fisiche Per ogni osservabile fisica q esiste un operatore associato Q, il quale, quando opera su una funzione d’onda associata ad un valore definito di quella osservabile, dà come risultato la stessa funzione d’onda moltiplicata per quel valore dell’osservabile. Per ogni osservabile fisica si introduce un operatore matematico associato che agisce sulla funzione d’onda, dando come risultato, in generale, un’altra funzione. Supponiamo che la funzione d’onda Ψn (autofunzione) sia associata ad un particolare valore qn (autovalore) della osservabilee che l’operatore sia indicato con Q. L’azione dell’operatore è data da: L’operatore matematico Q estrae il valore qn dell’osservabile, operando sulla funzione d’onda che rappresenta quel particolare stato del sistema. Questo processo è collegato alla teoria della misura in Meccanica Quantistica. Ogni funzione d’onda di un sistema quantistico può essere rappresentata come una combinazione lineare delle autofunzioni Ψn (si veda il postulato del sistema completo). Quindi l’operatore Q può essere usato per estrarre una combinazione lineare di autovalori, ciascuno moltiplicato per un coefficiente; questo è legato alla probabilità di ottenere come risultato della misura proprio l’autovalore corrispondente (si veda il postulato del valore di aspettazione).

  32. Operatori in Meccanica Quantistica Associato ad ogni grandezza misurabile di un sistema fisico vi è un operatore quantistico. In Meccanica Quantistica si descrivono i sistemi fisici mediante onde (la funzione d’onda), piuttosto che tramite particelle il cui moto e la cui dinamica possono essere descritti con precisione dalle equazioni deterministiche della Fisica di Newton. Questi operatori possono essere rappresentati in vari modi. Alcuni sono elencati qui di sotto:. In questa rappresentazione (detta di Schrödinger) degli operatori, le posizioni e le loro funzioni non cambiano, mente gli impulsi diventano derivate rispetto alla posizione. L’operatore dell’energia (Hamiltoniano) contiene derivate rispetto allo spazio ed al tempo.

  33. 3. Il postulato e le proprietà dell’operatore Hermitiano Ogni operatore Q associato ad una grandezza fisica osservabile è Hermitiano Ogni operatore quantistico Q, associato ad una grandezza fisica reale e misurabile, deve essere Hermitiano, cioè soddisfare la seguente proprietà: dove Ψa e Ψb sono funzioni arbitrarie normalizzabili, e l’integrazione è su tutto lo spazio. La richiesta è fisicamente necessaria, in quanto assicura che i valori misurati (cioè gli autovalori) siano numeri reali. Teorema: se Q è Hermitiano, allora tutti i qi sononumeri reali Inoltre, se Q è hermitiano, per ogni i ≠ j si ha:

  34. 4. Il teorema dell’insieme completo L’insieme delle autofunzioni di un operatore Hermitiano Q forma un insieme completo (una base) di funzioni linearmente indipendenti L’insieme delle funzioni Ψj, che sono autofunzioni dell’equazione agli autovalori forma un insieme completo di funzioni linearmente indipendenti. Esse formano una base: vale a dire che qualunque funzione d’onda che rappresenti il sistema può essere scritta come combinazione lineare delle funzioni della base: Ciò implica che qualunquefunzione d’ondaΨ che descrive il sistema fisico può essere scritta come combinazione lineare delle autofunzioni di qualunque osservabile fisica del sistema.

  35. 5. Il postulato del valore di aspettazione Per un sistema descritto da una data funzione d’onda Ψ, si può calcolare il valore di aspettazione di qualunque grandezza fisica q, alla quale è associato l’operatore Q. Per un sistema fisico descritto da una funzione d’onda Ψ, il valore di aspettazione di una qualunque osservabile fisica q può essere espresso in termini del corrispondente operatore hermitiano Q e della funzione d’onda, nel modo seguente: La funzione d’onda deve essere normalizzata e l’integrale è esteso a tutto lo spazio. Questo postulato diviene intuitivo se si considera il postulato dell’operatore Hermitiano e il teorema dell’insieme completo. La funzione d’onda può essere rappresentata come una combinazione lineare delle autofunzioni di Q, ed il risultato dell’integrale dà la somma di tutti i possibili valori fisici (gli autovalori di Q), ciascuno moltiplicato per un coefficiente (una probabilità). L’integrale dà quindi la media pesata di tutti i possibili valori dell’osservabile.

  36. Un sistema fisico è descritto dalla funzione d’onda Ψ, la quale può sempre essere scritta come una combinazione lineare delle autofunzioni dell’operatore Hermitiano Q: Se uno inserisce questa espressione nell’integrale del valore di aspettazione, trova con la seguente interpretazione: una misura di Q per lo stato Ψ darà come risultato uno qualunque dei suoi autovalori qn,ciascuno con una probabilità|cn|2. La condizione di normalizzazione della funzione d’onda implica: Una misura diQ forza il sistema a diventare uno dei possibili autostati (autofunzioni) di Q, Ψn: ogni eventuale misura successiva di Q darà sempre come risultato qn

  37. 6. L’ evoluzione temporale L’evoluzione temporale della funzione d’onda è data dalla equazione di Schrödinger dipendente dal tempo. Se Ψ(x,y,z; t) è la funzione d’onda di un sistema fisico ad un tempo t ed il sistema è libero da interazioni esterne al sistema, allora l’evoluzione nel tempo della funzione d’onda è data dove H è l’operatore Hamiltonianoformato a partire dall’espressione dell’Hamiltoniana classica e sostituendo le osservabili classiche con i corrispondenti operatori quantistici. Il ruolo dell’Hamiltoniano nella dipendenza spaziale e temporale della funzione d’onda è espresso dalle equazioni di Schrödinger.

  38. 1. Associata ad ogni particella che si muove in un campo di forze conservative esiste una funzione d’onda, la quale contiene tutte le informazioni che si possono ottenere sul sistema. 2. Ad ogni osservabile fisica q corrisponde un operatore associato Q, il quale, quando opera sulla funzione d’onda associata ad un particolare valore di quella osservabile, dà come risultato la stessa funzione d’onda moltiplicata per quel valore dell’osservabile. 3. Ogni operatore Q associato ad una proprietà fisica misurabile, è un operatore Hermitiano 4. L’insieme di autofunzioni di ogni operatore Hermitiano Q forma un insieme completo (o base) di funzioni linearmente independenti. 5. Per un sistema fisico descritto da una data funzione d’onda, il valore di aspettazione (o valor medio) di qualunque grandezza fisica q si trova calcolando l’integrale del valore di aspettazione rispetto a quella funzione d’onda. 6. L’evoluzione temporale della funzione d’ondaè dato dalla equazione di Schrödinger dipendente dal tempo.

  39. Una particella libera e l’equazione di Schrödinger L’equazione di Schrödinger non può essere dedotta; la sua validità viene dal confronto con i dati sperimentali. La naura ondulatoria di un elettrone è chiaramente confermata da esperimenti come quello di Davisson-Germer. Ciò fa sorgere la domanda: “Cosa è questa natura ondulatoria?". La risposta, a posteriori, è che questa natura ondulatoria si manifesta attraverso la funzione d’onda dell’elettrone. La soluzione dell’equazione di Schrödinger per una particella libera è un’onda piana, la quale contiene la relazione di deBroglie per l’impulso e di Planck per l’energia.

  40. E’ più facile mostrare la relazione con l’equazione di Schrödinger scrivendo l’onda piana in forma esponenziale usando larelazione di Eulero. Questa è l’espressione usuale per la funzione d’onda di una particella libera. Si può verificare che Ψ è autofunzione degli operatori impulso ed energia Il collegamento con l’equazione di Schrödinger si può fare esaminando l’espressione per l’energia per particelle e per onde (fotoni) Assumendo l’equivalenza di queste due espressioni and inserendo I loro corrispondenti operatori quantistici, ci porta all’equazione di Shrödinger

  41. Il principio di indeterminazione La posizione e l’impulso di una particella non possono essere misurati simultaneamente con precisione arbitraria. Il prodotto delle incertezze delle due misure ha un minimo. Lo stesso principio vale per la misura contemporanea di energia e tempo. Questo principio non riguarda il limite proprio degli strumenti di misura, o limiti derivanti dalla accuratezza dei metodi sperimentali. Deriva dalle proprietà ondulatorie intrinseche alla descrizione quantistica della natura. Anche con strumenti e tecniche perfetti, questa incertezza rimane, intrinseca alla natura delle cose.

  42. Il principio di indeterminazione La dualità onda-particella e la relazione di DeBroglie aiutano a comprendere tale principio. Man manoche si scende verso dimensioni atomiche, non è più valido considerare una particella come una sfera rigida, perché più piccole sono le dimensioni e più “ondosa” essa diviene. Non ha più senso dire che si conoscono precisamente la posizione e l’impulso di tale particella.

  43. La definizione esatta di Δx e Δp è

  44. Il confinamento di particelle

  45. Calcolo della energia di confinamento

  46. L’atomo di idrogeno La soluzione dell’equazione di Schrödinger per l’atomo di idrogeno si ottiene più facilmente usando coordinate polari sferiche e separando le variabili, così chela funzione d’onda è rappresentata dal prodotto: La separazione conduce a tre equazioni separate per le tre variabili spaziali, e le loro soluzioni portano ai tre numeri quantici associati con i livelli di energia dell’atomo di idrogeno.

  47. I numeri quantici per l’atomo di idrogeno La soluzione dell’equazione di Schrödinger per l’atomo di idrogeno richiede di imporre la condizione che le funzioni d’onda siano normalizzabili. Queste soluzioni, per le tre funzioni separate delle tre variabili, possono esistere soltanto se certe costanti che appaiono nelle equazioni assumono valori interi. Ciò porta ai numeri quantici dell’atomo di idrogeno: n = principal quantum number l = orbital quantum number ml = magnetic quantum number

  48. Il modello vettoriale per il momento angolare orbitale Il momento angolare orbitale per un elettrone atomico può essere visualizzato mediante un modello vettoriale, nel quale il vettore momento angolare effettua un moto di precessione intorno ad una direzione fissa nello spazio. Mentre la lunghezza del vettore ha il valore indicato, solamente un massimo di l unità of ħ può essere misurato lungo una certa direzione, dovel è il numero quantico orbitale. Anche se lo si definisce "vettore", il momento angolare orbitale in Meccanica Quantistica è un tipo speciale di vettore; infatti la sua proiezione lungo una direzione nello spazio è quantizzata, con valori che differiscono di una unità ħ. Il diagramma mostra che i possibili valori del “numero quantico magnetico" ml (for l =2), sono

  49. Lo spin dell’elettrone Lo spin di un elettrone, s = 1/2, è una proprietà intrinseca degli elettroni. In aggiunta al momento angolare orbitale gli elettroni posseggono un momento angolare intrinseco, caratterizzato dal numero quantico 1/2. In analogia al momento angolare orbitale, si ha: ms= ½ “spin su” ms= – ½ “spin giù” I due stati di spin, “su" e “giù“, permettono di avere due elettroni per ogni insieme degli altri numeri quantici

More Related