370 likes | 386 Views
Injector Requirements C é cile Limborg, SLAC May 21, 2003. Injector Overview Project Performance Goals Physics Performance Requirements for Long-Lead Procurements Operating range Tolerances, Safety Factors R&D Status References. Preinjector:. L. I. N. A. C. H. O. U. S. I. N. G.
E N D
Injector RequirementsCécile Limborg, SLACMay 21, 2003 • Injector Overview • Project Performance Goals • Physics Performance Requirements for Long-Lead Procurements • Operating range • Tolerances, Safety Factors • R&D Status • References Cécile Limborg, SLAC
Preinjector: Cécile Limborg, SLAC
L I N A C H O U S I N G S I D E W A L L e t e r o l e w / 3 0 d e g p r o t a t i o n s M A G N E T I C e c t r o m S p S C 2 X - Y C o r r e c t o r 1 M P E E B 1 V D 0 L E O A N H V U T G 1 A F S C 1 0 ' H I G H R E 1 V M S L 2 C A 1 Y V C - X F 1 1 C 2 0 S ' C L F A I C N C L o w - E D u m p E A L E C R A H T O O L I N A C H O U S I N G S I D E W A L L R U 1 3 ' - 3 . 2 7 " S I N L G I N S I A D C 3 E C E 2 V S M C L W A P 2 V 1 O B M A R C T H L O 3 L E 1 M E 0 P R V ' 4 B L A C E A C S V C N E T L E L R I A T G 7 7 ' ' H H I I G G H H O H R T S O 5 U M P 6 R C B S C 5 E C 3 S M M 4 M C 2 O P R B T O 1 D 0 I E F Q 2 I 0 C E 2 Q O A E 6 T M R 7 I P E C B K O S C I N K 3 F R T 3 T R 0 O E O Q L I 4 0 N E 8 1 7 Q A C M 0 1 0 ' H I G H 4 S S P C R W B T O 8 M P B 2 0 S W 5 R T O L I N A C H O U S I N G S I D E W A L L L I N A C H O U S I N G S I D E W A L L 0 1 C 1 S 0 E P E N . 2 1 - 1 3 P E N . 2 0 - 1 6 C 5 0 P E N . 2 0 - 1 5 S 6 M R W 9 C T P E N . 2 0 - 1 7 4 C 9 1 O M 0 S M 1 2 " B C 0 P B M B 3 4 9 . 4 Q 4 2 Q 1 2 0 0 1 8 0 1 0 1 2 2 M M S 1 2 A C C E L R T U B E M M 1 A C C E L 1 0 ' 0 M 3 A C C E L E R A T O R 1 0 ' A C C E L 1 C 1 0 ' W Q Q T C B Q M O P P S O S 9 B B E P R B T O 0 7 1 1 R 3 " 0 M S E C T I O N 2 0 - 8 C T S E C T I O N 2 0 - 8 A M R P S E C T I O N 2 0 - 8 B V A L V E P 1 O I M B S E C T I O N 2 1 - 1 B R E 0 T U B E U T M D 9 0 P B H E A - P E Q M Q M O T R 1 0 E 0 0 0 0 C M 6 O P E P - 2 H E / L E B Y P A S S 2 3 4 1 Q B B P M 1 3 T L E S B E A M D R I F T S E C T I O N A C C E L E R A T O R S E C T I O N S L I N A C H O U S I N G S I D E W A L L L I N A C H O U S I N G S I D E W A L L LCLS Injector Long Lead Items: The Injector Cathode Load Lock RF Photocathode Gun Gun Spectrometer SLAC 3-m Accelerator Sections Transverse RF Cavity (Longitudinal diag.) Drive Laser Upstairs in Sector 20 Alcove Shield Wall Straight Ahead Spectrometer & Diag. Cécile Limborg, SLAC
Injector Overview • Project Performance Goal • projected < 1.2 mm.mrad • slice < 1.0 mm.mrad for 80 slices out of 100 • slice(80%) projected emittance for the core 80 slices for 1nC, 10ps pulse at 150 MeV,in the presence of “jitter” errors at 120Hz repetition rate Cécile Limborg, SLAC
th = 0.72 mm.mrad th = 0.36 mm.mrad Simulations: Thermal emittance, Finite Rise Time • Thermal emittance of 0.72 mm.mrad (see Ref [1]) • Finite rise time of 0.7ps (from 10-90% level) Cécile Limborg, SLAC
Simulations: Operating Range and Sensitivity Cécile Limborg, SLAC
Simulations: Sensitivity Study: Combination of Errors • Using extreme values of parameters deviations meeting regulation specifications 2^6 possibilities = 64 runs Cécile Limborg, SLAC
Results of Simulations: Tolerances (*) combined with uniformity of QE Cécile Limborg, SLAC
First Linac Section Mis-positioning • Effects of Wakefields : • Position : 150 m maximum • Angular : 0.12 mrad • With alignment & steering : those requirements are easily met (BPM resolution 20 m ) At end beamline At end beamline ~2% increase level ~2% increase level Cécile Limborg, SLAC
Requirements on Laser Pulse Cécile Limborg, SLAC
Physics Performance Requirements for Diagnostics • Gun Spectrometer • Energy • Correlated Energy • Uniformity of line density • Emittance measurement • Three screen measurement (with wire scanners) • Straight Ahead Spectrometer • Energy • Energy Spread, Correlated and Uncorrelated • Slice emittance (in combination with deflecting cavity) Cécile Limborg, SLAC
Gun Spectrometer Measurements (see Ref [8]) • Absolute Energy at gun exit • Energy Spread • Correlated for all charges • Uncorrelated at low charge • Resolving Power large (10keV at 5MeV, = 2.10-3) • Uniformity of line density • Point-to-point imaging of beam at first screen ( in both planes) • Relay-imaging system: cathode first screen (XY image) spectrometer screen Cécile Limborg, SLAC
Gun Spectrometer Can Measure Uniformity of Line Charge Density • can resolve a minimum of 5% initial modulation Cécile Limborg, SLAC
x y t E y ~ k1t x ~ k2E Straight Ahead Spectrometer • Absolute Energy Measurements • Correlated and Uncorrelated energy spread • Resolution: 10keV at 150MeV by focusing beam down to 115m • Measurement of slice emittance • Full 6D emittance measurement in combination with Transverse Deflecting cavity • Details of parameters in Ref [8], 35 bending magnet, standard SLAC Quadrupoles Transverse Deflecting cavity (Ref [7]) Longitudinal emittance Spectrometer Uncorrelated energy spread 2 in A xo2+ B yo2 +,uncor2 xo,yo small at waist (object plane imaged) Slice emittance Cécile Limborg, SLAC
head tail 150 100 50 Time (ps) 0 -1.5 -1 -0.5 0 0.5 1 2 1 0 5 10 R&D Status: GTF Measurements • GTF measurements (Ref [10]) 300pC slice = 1.5 mm.mrad for 130 A ~ close to LCLS requirements Similar measurements at the DUVFEL facility (Spring 2002) Spectrometer Image of Slice Quad Scan Data Peak Current (A) Instantaneous Peak Current n (mm mrad) Slice Emittances longitudinal emittance Slice number Cécile Limborg, SLAC
DUVFEL Measurements • PARMELA Simulations of DUVFEL measurements (Ref.[1]) • Simulations match measurements very well • For slice emittance and Twiss parameters • For various solenoid fields After including thermal emittance, gun field balance between the two cells, transverse non-uniformity and longitudinal profile • Thermal emittance experiment • Confirms the 0.6 mm.mrad per mm radius of laser spot size Cécile Limborg, SLAC
Solenoid = 104 A Solenoid = 98 A • DUVFEL measurements (see Ref [1]) • 200 pC • Good Agreement Slice Emittance and Twiss Parameters for the various solenoid fields Cécile Limborg, SLAC
R&D Status • Other Simulation work • Comparison of codes [6] (5 codes: TREDI, BEAMPATH, HOMDYN, ASTRA, PARMELA) for the LCLS PhotoInjector • Confirms small uncorrelated energy spread • Confirms adequacy of LCLS present tuning • Simulations of GTF longitudinal emittance measurements [9] • Good agreement on measured energy spread • Comparison with PIC codes for [5] • Good approximation of dynamics in PARMELA at extraction • Wakefield included in PARMELA • Benchmarked with Elegant Cécile Limborg, SLAC
CONCLUSIONS • Most of the LCLS injector linac is standard SLAC design, no technical risk • Gun performance has received a lot of attention; simulations agree with measurements (for both GTF and DUVFEL) • LCLS has safety margin for reaching saturation with this injector Cécile Limborg, SLAC
LIST OF REFERNCES • Simulations vs Experiments • [1] “PARMELA vs Measurements for GTF and DUVFEL “, EPAC 2002, (SLAC-PUB-9556) • [2] “Comparison of PARMELA Simulations with Longitudinal Emittance Measurements at the SLAC Gun Test Facility” , PAC03 • [3] “Simulations of the quadrupole scan measurement technique” [ICFA Wokshop, to be published as a SLAC note] • Simulations • [5] “Simulations Issues for PhotoInjectors” , ICAPS02 • [6] “Code Comparison for Simulations of Photo-injectors”, PAC03 Cécile Limborg, SLAC
LIST OF REFERNCES • Instrumentation • [7] “Transverse Deflecting Cavity” R.Akre, et al. ,WPAH116.PDF , PAC 01, Chicago 2001 • [8] “Spectrometers for the LCLS PhotoInjector Beamline”, C.Limborg, LCLS Tech Note • Experiment & PARMELA vs Experiment • [9] “Comparison of PARMELA Simulations with Longitudinal Emittance Measurements at the SLAC Gun Test Facility”,C.Limborg, PAC 03 • [10] “Slice Emittance Measurements At the SLAC Gun Test Facility ” D.Dowell, FEL02, ANL,Chicago,August 02, (SLAC-PUB-9540) Cécile Limborg, SLAC
BACK- UP SLIDES Cécile Limborg, SLAC
Physics Performance Requirements Solenoid 1 0.3% gun2.5 Egun0.5% Linac Field 12 % (EFinal = 150 MeV ) Solenoid 2 20% Cécile Limborg, SLAC
Simulations: Sensitivity Study • 64 runs with maximum sensitivity errors 2^6 = 64 runs Cécile Limborg, SLAC
Charge 5% Radius 5% Physics Performance Requirements • Charge • 7 % ok , objective 5% • Laser Spot Size • 1% very easy to maintain Cécile Limborg, SLAC
5% level Physics Performance Requirements • Laser Quality • Longitudinal Flat top Flatness • Emittance deterioration • Result : • For > 240 m, Modulation < 20% • For 240 m < , Modulation < 30% 20% peak-to-peak Cécile Limborg, SLAC
Physics Performance Requirements • Laser Quality • Longitudinal Flat Top Flatness • Source of CSR in BC2 if modulation in range 100m < <200 m • Result: favorable situation since good dilution for short wavelengths ( < 240 m ) Cécile Limborg, SLAC
Physics Performance Requirements • Laser Quality: Transverse Uniformity • High frequency modulations get diluted [1], low frequency is the most damaging • Slope across Spot • Offset of center of gravity transverse wakefield in linac • Criteria: deterioration of slice emittance at linac entrance by less than 5% or center of gravity off by less than 100 m at linac entrance • Result : No more than +/- 15% (+/- 10% feasible and will be the tolerance) Cécile Limborg, SLAC
Physics Performance Requirements • Laser Quality: Transverse Uniformity • “Checker board” type : low frequency is worst case [1] • Generates ellipticity but no centroid offset • Generates slice emittance growth • Result : maximum +/ 15% modulation (again 10% feasible and is the specification) Cécile Limborg, SLAC
Physics Performance Requirements • Alignment Linac Section : • Head-to-Tail Offset at entrance Linac • Result : +/- 50 m Cécile Limborg, SLAC
Physics Performance Requirements • Alignment : Solenoid Tilt • Creates centroid offset and angle (but can be corrected by steering) • Creates slice emittance increase • Criteria : • slice(80%) at entrance Linac does not increase emittance by more than 1% • Head-tail centroid offset less than 100 m at entrance linac • Result : 1.5 mrad maximum • No problem with offset of centroids, no problem in angle either Cécile Limborg, SLAC
Physics Performance Requirements • Alignment : Solenoid Offset • Creates offset and angle of bunch (can be corrected by steering) • Creates head-tail centroid offsets and angle • Criteria : • slice(80%) at entrance Linac not increase by more than 1% • Head-tail centroid offset less than 100 m • Result : 500 m maximum Cécile Limborg, SLAC
Physics Performance Requirements • Alignment : Laser Position Steering • Creates offset and angle of bunch • Creates head-tail centroids offsets and angles • Creates slice emittance growth • Criteria: • slice(80%) at entrance Linac not increase by more than 5% • Head-tail centroid offset less than 100 m • Result : 100 m Cécile Limborg, SLAC
Physics Performance Requirements • Alignment : Laser Position Steering Cécile Limborg, SLAC
Solenoid = 98 A Data Parmela DUVFEL EXPERIMENT Good match of Slice Emittance and Twiss Parameters Parameters: 200 pC Solenoid = 104 A Solenoid = 108 A Cécile Limborg, SLAC
Spectrometer 2 Design • Preliminary Design • The dipole magnet was chosen to give 35 bending angle • We do a point-to-point imaging of the waist, the energy is 150 MeV • uses standard quadrupoles • 2.5 m long • space available for installing sextupoles • Resolution of 10keV at 150MeV, = 6.6.10-5 ,Resolving power too small • <x2> =~ R112 <xo2> + R162 < 2> • Beam size at waist for having xo small , xo = 115 m Cécile Limborg, SLAC