1 / 32

Polarisation Propagator

Polarisation Propagator. Collective excitations (M227, F 171, F 558) Poles of G are single-particle excitations (creation of particles or holes) Poles of P are collective excitations Density and Density Fluctuation operators. Polarisation Propagator. Dielectric Function

dominy
Download Presentation

Polarisation Propagator

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Polarisation Propagator • Collective excitations (M227, F 171, F 558) • Poles of G are single-particle excitations (creation of particles or holes) • Poles of P are collective excitations • Density and Density Fluctuation operators

  2. Polarisation Propagator • Dielectric Function • The dielectric function for a material relates the electrostatic potential due to all charges to an external electrostatic potential

  3. P Po r’,t’ r,t r’,t’ r,t Polarisation Propagator • Space-time interpretation of Polarisation Propagator • Drawn as a pair of directed lines • Non-interacting propagatorPo represented by single directed lines • Interacting propagatorP represented by filled loop Create electron-hole pair Destroy electron-hole pair t > t’ time

  4. Polarisation Propagator • Lehmann Representation(F 172 M 375) physical significance of P

  5. Polarisation Propagator • Lehmann Representation(F 172 M 375) physical significance of P

  6. Polarisation Propagator • Time-Ordered (Causal) Polarisation Propagator (i)2Go(r,r) Go(r’,r’) (i)2Go(r,r’) Go(r’,r) -(i)2Go(r,r) Go(r’,r’)

  7. 1,t1 Po(1,2) 2,t2 Polarisation Propagator • Single-particle polarisation propagator Po in coordinate form

  8. Polarisation Propagator • Single-particle polarisation propagator Po in coordinate form

  9. Im(e) Advanced xxx xx xx xxx x x xxx Re(e) xxx xx xx xxx x x xxx Retarded Polarisation Propagator • Poles of time-ordered P or Po in the complex energy plane

  10. r’ r’ r 1 2 r r’ 1 2 r Polarisation Propagator • Leading terms in expansion of Polarisation Propagator (i)2Go(r,r’) Go(r’,r)

  11. Polarisation Propagator • Further Diagrams in the Polarisation Propagator • Zeroth Order • First Order • Second Order • Third Order

  12. Polarisation Propagator • Classification of Diagrams in the Polarisation Propagator • Proper • Improper • Ladder • Ring (Bubble) Vertex Part

  13. = + + + … + + … + + Polarisation Propagator • Effective Interparticle Interaction (M 189, F 111, 154) • Total inter-particle/hole interaction is sum of direct (instantaneous Coulomb) interaction plus (retarded) reaction from medium = + P V = v + v P v V effective (dressed) interaction v Coulomb (bare) interaction P Polarisation propagator (polarisation insertion)

  14. Polarisation Propagator • Effective Interparticle Interaction • Summation in terms of proper polarisation insertion P* P* = + + + … V = v + v P*V = v + v P* (v + v P* V) = v + v P* v + v P* v P* (v + v P*)V P = P* + P* v P V = v + v P v V = v + v (P* + P* v P) v V = v + v P*v + v P* v (P* + P* v P) v

  15. Polarisation Propagator • Effective Interparticle Interaction:Dielectric Function • V = v + v P* V • (1 - v P*) V = v • V = (1 - P*v)-1 v • e-1 = (1 - v P*)-1 • e = (1 - v P*) • P* = Po yields the Random Phase Approximation to e • eRPA = (1 - v Po)

  16. Polarisation Propagator • Selective Summation of Ring Diagrams • Restricting P* to Po in e-1 sums ring diagrams to infinite order • e-1RPA v = (1 - v Po)-1v= (1 + v Po + v Po v Po + v Po v Po v Po + … ) v • = v + v Po v + v Po v Po v+ v Po v Po v Po v+ … = + + + …

  17. EExt p1 p2 Polarisation Propagator • Model of the Density Response Function

  18. Polarisation Propagator • Model of the Density Response Function

  19. Eext Eext Eext Polarisation Propagator • Model of the Density Response Function -T12 -T12 2 2 1 1 1 2 -T21

  20. Polarisation Propagator • Model of the Density Response Function Si Si Herrendörfer and Patterson J Phys Chem Solids 58, 207 (1997)

  21. Polarisation Propagator Expt - - - - Model ____ • Model of the Density Response Function

  22. Polarisation Propagator • Model of the Density Response Function • Reflectance Anisotropy of stepped silicon surfaces Hogan and Patterson, Phys. Rev. B 57, 14843 (1998)

  23. Polarisation Propagator • Model of the Density Response Function • Expansion of the polarisability Po in s (occ) and p (unocc) ETB Bloch orbitals s Bloch state px Bloch state Nicastro, Galamic-Mulaomerovic and Patterson, J. Phys. Condens. Matt. 13, 1215 (2001)

  24. Polarisation Propagator • Model of the Density Response Function • Polarisability and Coulomb expansion coefficients R1q R2q Tq

  25. Polarisation Propagator • Model of the Density Response Function

  26. 2 4 4 3 1 1 2 3 2 4 3 The GW Approximation • Self Energy • Expressed generally as S = G W G M 211 • G dressed Green’s function • W is the screened interaction W = v + v P v • G is the vertex part (vertex correction) S(1,2) = G(1,3) W(1,4) G(3,4,2) = + + + …

  27. 2 W(q, e’) Go(k - q, e - e’) 1 The GW Approximation • Self Energy:GoWo COHSEX approximation • Wo= e-1RPA v Wo is the screened interaction in RPA • G = d(2 - 3) d(2 - 4) • S(1,2) = Go(1,3) Wo(1,4)d(2 - 3)d(2 - 4) = Go(1,2) Wo(1,2) Hybertsen and Louie Phys. Rev. B 34, 5390 (1986) (861 citations)

  28. The GW Approximation • Self Energy:GoWo COHSEX approximation • Poles of Go: Screened Exchange (SEX) contribution to S • Poles of Wo: Coulomb hole (COH) contribution to S

  29. The GW Approximation • Poles of time-ordered e-1xand Gox in the complex energy plane Im(e) Advanced m x xx xx xx x x xxx xxx xx xx xxx x x xxx Re(e) xxx xx xx xxx x x xxx xxx xx xx xxx x x xxx Retarded

  30. The GW Approximation • Self Energy:GoWo COHSEX approximation • Poles of Go: Screened Exchange (SEX) contribution to S • Poles of Wo: Coulomb hole (COH) contribution to S

  31. 2 1 The GW Approximation • Model of the Density Response Function • Self Energy:GoWo approximation Nicastro, Galamic-Mulaomerovic and Patterson, J. Phys. Condens. Matt. 13, 1215 (2001)

  32. 2 1 The GW Approximation • Model of the Density Response Function • Self Energy:GoWo approximation

More Related