1 / 40

POLARISATION IN QCD

POLARISATION IN QCD. - m anomalous magn. moment, g-2 - Spin structure of the nucleon D q, D G, GPD, D t q. µ. n e. t. m anomalous magn. moment, g-2. Test of SM : if exp ≠ theory → new physics Calculation of a m =(g m -2)/2 : - QED (4 loops) - EW (2 loops)

wanda-barry
Download Presentation

POLARISATION IN QCD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. POLARISATION IN QCD - manomalous magn. moment, g-2 - Spin structure of the nucleon Dq, DG, GPD, Dtq

  2. µ ne t m anomalous magn. moment, g-2 • Test of SM: if exp ≠ theory → new physics • Calculation of am=(gm-2)/2 : - QED (4 loops) - EW (2 loops) - hadronic (main error) • E821 experiment @ BNL: - Pol. m from PV p decay - Precession  am - PV in m decay - decay e in 24 Ecal

  3. E821 experiment (final) • fit N(t) = N0e-t/t  [1+Acos(wat + f)] • measure <B> with NMR • wa/<B> → am=(11,659,208±5±3) 10-10 • 15 times better than earlier exp. hep-ex/0501053 t (ms)

  4. Theory vs experiment Contributions 1010 • 2.7 s→new physics ? SUSY, leptoquark, m substructure, anomalous W coupling • new proposal E969 - keep main ideas and ring - 5 times more m - reduced syst. → dam 2 10-10 • improved theory → factor 2 in exp-the (*) Using e+e- data + KLOE (not t)

  5. The spin structure of the nucleon

  6. quark contribution Dq(x) • inclusive Deep Inelastic Scatter. (DIS) • s → f1(x)=½∑ eq2q(x) • Ds = s -s→g1(x)=½∑ eq2Dq(x) with Dq(x)=q+(x) -q-(x) • Dq=∫Dq(x)dx

  7. The spin crisis • EMC (1988): ∫g1(x)dx =½∑eq2Dq where Dq=∫Dq(x)dx • Hyperon b decay + SUf(3) : DS = 12 ±9 ±14%  60% expected → “spin crisis” • One of the 6 most cited exp. papers (SPIRES) • Confirmed by SMC, SLAC and Hermes : DS= 20 - 30% • Uncertainty dominated by low x extrapolation DS=Du+Dd+Ds

  8. g1d(x) at low x PLB 612 (2005) 154 • COMPASS systematically > SMC at low x • new data : DS =0.202 +0.042 -0.077→ 0.237 +0.024 -0.029

  9. final g1 data Smearing (resolution and radiative corr.) → correlation between x bins

  10. g1n(x) at high x • pQCD + no Lz→ A1=Du/u= Dd/d=1 at high x • Very accurate A1n at high x A1n > 0 at x > 0.5 • + world A1p →Dd/d < 0 so Lz not negligible ? Du/u Dd/d PRL 92, 012004 (2004)

  11. Axial anomaly • EMC : a0=DS -(3as/2p)DG • if DG=0 →DS=0.2 • if DG2.5 →DS0.6 • We must measure DG= ∫DG(x)dx

  12. gluon contribution DG(x)

  13. DG(x) with a lepton beam • Photon Gluon Fusion (PGF) to probe gluons • Open charm = golden channel • 2 high pt hadrons: more stat. but model dependent : Bkg: QCDC Resolved g (Q2<1)

  14. Direct measurent of DG(x) 2003 • Open charm (2002+2003) DG/G=-1.08 ± 0.76 not enough stat yet • High pt hadrons 2002+2003 data Q2<1 GeV2 Bkg estimated using Pythia correction forBkg asym. DG/G=0.024 ±0.089 ±0.057 Curves DG=∫DG(x)dx = 0.2, 0.6, 2.5 → either DG small or DG(x) crosses 0

  15. DG(x) with pp collider • Prompt g (golden channel) • p0 prod : much more stat

  16. p0 prod. from run 3 and 4 favors GRSV standard Run 5 just finished : FoM=LP4 100 times larger Spin program at STAR also DG(x) at RHIC

  17. Transversity DTq(x) At leading twist 3 pdf for the nucleon • q(x):unpolarized • q(x)= q- q = q+- q- :helicity • Tq(x)= q- q:transversity

  18. DTq is chiral odd → not in inclusive DIS In Drell-Yan: DTq DTq SI DIS : DTq(x) DTDqh(z) Measure of DTq(x)

  19. DTq(x) in SI DIS • Collins Fragm. Funct. : hadronazimuthal asym Collins angle fcol=fh +fs –p also Sivers angle fsiv=fh –fs related to transverse kt • interference FF(2 hadrons): azimuthal angle fRS=fR +fs –p

  20. DTq(x) through Collins x z Pt Pt x z Clear evidence for both Collins and Sivers asymmetries Sivers → non zero Lz

  21. Collins Sivers DTq(x) through Collins • No sizeable effect: cancellation in isoscalar d target ? • 3*statistic available on d, 2006 p target

  22. DTq(x) through interference • P target • Clearly A>0 • No change of sign • at r mass (≠ Jaffe)

  23. DTq(x) through interference d target Asym. vs Minv, x, z consistent with 0 • 3*statistic expected, 2006 runs on p target (NH3)

  24. e+e- CMS frame: j2-p e- Q j1 e+ Measurement of DTDqh(z) SI DIS : DTq(x) DTDqh(z) j1 j2 s =A +B cos(f1+f2) DTDqh(z1) DTDqh(z2)

  25. Measurement of DTDqh(z) Non zero effect, increasing with z 10 times more stat available

  26. Single spin asym. in pp • Collins and Sivers not distinguishable STAR A(p0) > 0 at xF>0 A(p0) = 0 at xF<0 p0, h+, h-: A=0 for xF 0

  27. p Single spin asym. in pp • Measured asym: • xF>0, p+>0 and p-<0 • xF>0, p-=0 • p=0 xF : 0.17 - 0.32 xF <0

  28. GPD Generalized Parton Distributions

  29. t GPD definition • Deep Virtual Compton Scattering (DVCS) • H(x,0,t) → 3D view of nucleon (x,d) related to Lz (Ji sum rule)

  30. GPD measurement • Interference BH with DVCS • BH calculable → TDVCS • Single Spin Asym. (beam) → Im H(x,x=x,t) sin f • Beam Charge Asym. (e+ versus e-) → Re H(x,x,t) cos f

  31. DVCS at HERMES Beam charge asym. Also single spin asym. more stat → constrain GPD models

  32. DVCS at Hera Also gluons GPD : t-dependence of s measured e-bt with b=6 GeV-2 model: Hq(x,x,t)=q(x)e-bt

  33. Conclusions • g-2: 2.7 s effect = new physics ? new exp and progress in theory → reduce error by 2 • Spin structure of the nucleon is a very active field - more topics, e.g. tensor SF of d - DG might be small ? a surprise → indeedDS =0.2-0.3 - transversity : clear signal seen by Hermes Collins fragmentation function nonzero (Belle) • GPD : opening field • New projets - PAX at GSI pp collider: ideal for transversity in DY - ERHIC ep collider : low x, NLO analysis, DG(x), DVCS

  34. Spare slides

  35. Tensor structure fct b1d • spin 1: 3 long. pdf: q1↑ q1↓ q0 • b1 2q0 -(q1↑ +q1↓) • if p and n at rest b1=0 • Exp: b1>0 at low x Hep-ex/0506018

  36. Sivers effects Collins effects describes the spin-dependent part of the hadronisation of a transversely polarised quark q into a hadron h Intrinsic kT dependence of the quark distribution

  37. DG from QCD analysis of g1 • DGLAP equations: ∂Dq/ ∂ lnQ2 → DG • not enough Q2 range for g1 • AAC analysis Phys.Rev.D69:054021,2004

  38. Quark model: DS = 1 Rel. corr. → DS 75% QCD: DS = Du +Dd +Ds Ds=0 → DS 60% quark contributions • EMC DS = 12 ±9 ±14%→ “spin crisis” One of the 6 most cited exp. papers (SPIRES)

  39. Polarized Deep Inelastic Scatter. • Q2 =-q2µ probe resolution • x=Q2/2M(e-e’) quark moment. fraction • structure function (x,Q2) • scaling: no Q2 dependence (first order) • s → f1(x)=½∑ eq2q(x) • Ds = s -s→g1(x)=½∑ eq2Dq(x) with Dq(x)=q+(x) -q-(x) • Dq=∫Dq(x)dx

  40. The spin crisis • EMC measures A1=g1(x)/F1(x) →G1 = ∫g1(x)dx =½∑eq2Dq • Hyperon b decay + SUf(3) → a3=Du-Dd a8=Du+Dd-2Ds • 3 equations and 3 unknowns → DS and Ds • Confirmed by SMC, SLAC and Hermes : DS= 20 - 30% • Uncertainty dominated by low x extrapolation

More Related