1 / 58

Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL

A Tutorial on the g-2 Measurement of the Muon. Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL on behalf of the muon g-2 collaboration. 3 rd Joint NIPNET ION-CATCHER HITRAP Collaboration Meeting : 

duyen
Download Presentation

Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Tutorial on the g-2 Measurement of the Muon Klaus P. Jungmann, Kernfysisch Versneller Instituut, Groningen, NL on behalf of the muon g-2 collaboration 3rd Joint NIPNET ION-CATCHER HITRAP Collaboration Meeting:  2-6 June, 2004, Krakow, Poland Fundamental Laws Quantities Magnetic Moments Standard Model Precision Experiment Fundamental Constants Related Experiments Interpretation

  2. Vernon Hughes 1921-2003

  3. What means>>fundamental<< ? • Physicists in general: have always a tendency to put their own activities as fundamental  renormalization of meaning • Albert Einstein : >> I would like to know how God has made the world. I am not interested in one or another phenomenon, not in the spectrum of one or another element. I would like to know His Thoughts, everything else are just details.<<  recalls literal meaning, i.e. basic, not deducible law

  4. Gravitation Gravitation Electro - Electro - Magnetism Magnetism Magnetism Magnetism Maxwell Electricity Electricity ? ? Physics within the Standard Model Glashow, Salam, t'Hooft, Veltman,Weinberg Weak Weak Electro - Weak Electro - Weak Standard Model Standard Model Strong Strong Grand Grant Unification Unification not yet known? not yet known? Fundamental Interactions – Standard Model Physics outside Standard Model Searches for New Physics

  5. TRImP Low Energies & Precision Measurement High Energies & direct observations Possibilities to Test New Models 

  6. Magnetic Moment r r e h m s = g L=1h re=a0 2 mc e- ve= ac * Dirac: g = 2 for spin ½ particles * Baryon Octet: ¹ Û g 2 inner structure magnetic momentM = area * current = p a02 * e*ve/(2p a0) = e h / (2 e m c) = “magneton” Bohr Magneton for electrons r e h r ( ) m proton : g 2 = * s > 2 2 . 79 p p 2 m c N r e h r ( ) m ¹ = * - s g 0 neutron: 2 1 . 91 n n 2 m c N * Leptons: ¹ Û g 2 interaction with virtual fields , e.g. QED ... electro n 2 2 - a a a g 2 1 æ ö æ ö muon = = + + + a a a ... ç ÷ ç ÷ 2 3 p p p è ø è ø 2 2 tauon

  7. QED - Contributions: am(QED) = 116 584 705.6(2.9) * 10-11(Kinoshita 2000) Weak Interaction Corrections: m m m m m m Dam(weak) = 151(4) * 10-11(Kutho 1992, Degrassi 1998)

  8. QED - Contributions: am(QED) = 116 584 705.6(2.9) * 10-11(Kinoshita 2000) Weak Interaction Corrections: m m m m m m Dam(weak) = 151(4) * 10-11(Kutho 1992, Degrassi 1998)

  9. The bound state introduces : • the me/Mnucleus mass ratio • the expansion parameter Za Slides taken from T. Beier, GSI

  10. The new measurement of the muon magnetic anomaly • at the Brookhaven National Laboratory aims for • 0.35 ppm relative accuracy. • Why? • We have in the listing of fundamental physical constants: • electron magnetic anomaly • 1.159 652 186 9(41) 10 -3 (0.0035 ppm) • muon magnetic anomaly • 1.165 916 02(64) x 10-3(0.55 ppm) Sensitivity to heavier objects larger by (mm/me)2 40 000

  11. ! ! Hadronic Corrections for gm-2 Dam(hadr.,1st order) = 6951(75)*10-11 (Davier, 1998) Dam(hadr., higherorder) = -101(6) *10-11 (Krause, 1996) Dam(hadr., light on light) = -79(15) *10-11 (Hayakawa, 1998) Situation Spring 2001

  12. Early “Shopping List”

  13. The fixed probes 4 ppm Proton NMR

  14. Trolley NMR Probes NMR Trolley Fixed NMR Probes Electrostatic Quadrupole Electrodes Trolley Rails Vacuum Vessel

  15. 900 000 000 positrons with E > 2GeV in 1999

  16. Fourier Spectra for different Run Conditions m- @BNL

  17. Systematic Uncertainties, Results Magnetic Field • wp,0 spherical probe 0.05 ppm • wp(R,ti) 17 trolley probes 0.09 ppm • wp(R,t) 150 fixed probes 0.07 ppm • wp(R) trolley measurement 0.05 ppm • < wp> muon distribution 0.03 ppm • wp (RI) others 0.10 ppm total systematic uncertainty dwp=0.17ppm Spin Precession • Pileup 0.08 ppm • Lost muons 0.09 ppm • Coherent Betatron Oscillations 0.07 ppm • Gain Instability 0.12 ppm • others 0.11 ppm total systematic uncertainty dwa,sy = 0.21 ppm total statistical uncertainty dwa,st = 0.6 ppm wp/2p = 61 791 400 (11) Hz wa/2p = 229 073.59(15)(5) Hz

  18. Theory: * need a for muon ! * hadronic and weak corrections *various experimental sources of a<better 100ppb>need constants at very moderate *a no concern for (g-2)maccuracy wa wammc Experiment: wp = am = mm wa emB - wp mp * wa and B (wp) measured in (g-2)m experiment <better 0.35 and 0.1 ppm> * c is a defined quantity <“infinite” accuracy> *mm (mm) is measured in muonium spectroscopy (hfs) <better 120 ppb> NEW 1999 *em is measured in muonium spectroscopy (1s -2s) <better 1.2 ppb> NEW 1999 *mp in water known >> probe shape dependence<< <better 26 ppb> *m3He to mp in water >> gas has no shape effect << <better 4.5 ppb> being improved

  19. m g-2 hadronic contribution weak contribution New Physics QED QED h mm, a, gm mm m+e- DnHFS, n=1 m+e- Dn1S-2S QED mm mm a QED corrections weak contribution mm QED corrections

  20. Muonium Hyperfine Structure Yale - Heidelberg - Los Alamos Solenoid Dnexp = 4 463 302 765(53) Hz ( 12 ppb) Dntheo = 4 463 302 649(520)(34)(<100) Hz(<120 ppb) mm /mp = 3.183 345 13(39) (120 ppb) mm/me = 206.768 273(24) (120 ppb) a-1= 137.036 010 8(5 2)( 39 ppb) Sm m+ e- Detector m+in MW-Resonator W. Liu et al. Phys. Rev. Lett. 82, 711 (1999)

  21. Muonium 1S-2S Experiment Heidelberg - Oxford - Rutherford - Sussex - Siberia - Yale m++ e-+ Ekin 0 -.25 Rm 2S 244 nm Energy exp Dn 1s-2s = 2455 528 941.0(9.1)(3.7) MHz Dn 1s-2s = 2455 528 935.4(1.4) MHz mm+= 206.768 38 (17) me qm+= [ -1 -1.1 (2.1) 10-9 ] qe- 244 nm theo -Rm 1S m+ Detection m+ Laser Mirror m+e- Target Diagnostics m+in V.Meyer et al., Phys.Rev.Lett. 84, 1136 (2000)

  22. Final results from Experiment E821 @BNL

  23. ! ! Hadronic Corrections for gm-2 Dam(hadr.,1st order) = 6951(75)*10-11 (Davier, 1998) Dam(hadr., higherorder) = -101(6) *10-11 (Krause, 1996) Dam(hadr., light on light) = -79(15) *10-11 (Hayakawa, 1998)

  24. Final results from Experiment E821 @BNL Newest Theory Offer: 2.4 SD from Experiment

  25. Note:Even if there will be a difference between muon g-2 and theory established and unquestioned, it does not carry a tag about the nature of the difference! We will need further experiments then to learn more! Such as: - searches for rare muon decays - search for a muon edm - ..............................

  26. m eg appears in composite models if Dam as suggested

  27. ~ Muon Magnetic Anomaly in Super Symmetric Models Z k ~ ~ m m m m k k g g • no constraints from dark matter • constraint through dark matter ~ ~ w w + + - - m m ~ n • At, m0 vary over • parameter space • m0 < 1TeV/c2 approximate rule : DamSUSY» 1.4 * 10-9 * [ (100 GeV/c2) /mg ]2* tan b ~ goal BNL 821: am to 0.4 * 10-9 after: U. Chattopadyay and P. Nath, 1995

  28. Lepton Magnetic Anomalies in CPT and Lorentz Non - Invariant Models | | - m m - 0 0 18 CPT tests K K = £ r 10 K m 0 K - - | g g | | a a | - + - + - - 3 12 e e e e = = × × £ × r 1.2 10 2 10 e g a avg avg ? ? Are they comparable - Which one is appropriate • often quoted: • K0- K0 mass difference (10-18) • e- - e+ g- factors (2* 10-12) • We need an interaction • with a finite strength! Use common ground, e.g. energies Þ generic CPT and Lorentz violating DIRAC equation 1 n μ μ μ μν μ μ ν ψ - - - - + + = (i γ D m a γ b γ γ H σ ic γ D id γ γ D ) 0 μ μ μ 5 μν μν μν 5 2 º ¶ - iD i qA m μ μ a , b break CPT a , b , c , d , H break Lorentz Invariance μ μ μ μ μν μν μν Leptons in External Magnetic Field - + l l l = - » - Δω ω ω 4b a a a 3 - + l l - | E E | Δω h spin up spin down a = » r l - 2 l m c E l spin up 57 Bluhm , Kostelecky, Russell, Phys. Rev. D ,3932 (1998) For g - 2 Experiments : - | a a | ω h = × c - + l l r l 2 a m c avg l Dehmelt, Mittleman,Van Dyck, Schwinberg, hep - ph/9906262 Þ - - 21 24 £ × £ × r 1.2 10 r 3.5 10 electron muon μ e : : CPT– Violation Lorentz Invariance Violation • What is best CPT test ? • New Ansatz (Kostelecky) • K0  10-18 GeV/c2 • n  10-30 GeV/c2 • p  10-24 GeV/c2 • e 10-27 GeV/c2 • m 10-23GeV/c2 • Future: • Anti hydrogen 10-18 GeV/c2

  29. CPT and Lorentz Invariance from Muon Experiments Muonium: new interaction below 2* 10-23 GeV Muon g-2: new interaction below 4* 10-22 GeV (CERN) 15 times better expected from BNL V.W. Hughes et al., Phys.Rev. Lett. 87, 111804 (2001)

More Related