1 / 25

Matice

Matice. Mgr. Andrea Cahelová Gymnázium J. Kainara , Hlučín. Definice. Tabulka o n sloupcích a m řádcích, přičemž toto značení řádků a sloupců nemusí být vždy stejné. Tato matice má dva řádky a tři sloupce.

dylan-lane
Download Presentation

Matice

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Matice Mgr. Andrea Cahelová Gymnázium J. Kainara, Hlučín

  2. Definice • Tabulka o n sloupcích a m řádcích, přičemž toto značení řádků a sloupců nemusí být vždy stejné. • Tato matice má dva řádky a tři sloupce. • Prvky matice se značí pomocí indexů, namísto velkého písmene se používá malé písmeno: a11 = 0 nebo a23 = 51. • První index udává řádek a druhý index sloupec.

  3. Druhy matic • Čtvercová matice je matice, která má stejný počet řádků jako sloupců. • Nulová matice je matice, která má na všech pozicích nuly. aij = 0.

  4. Jednotková matice je čtvercová matice, která má na hlavní diagonále jedničky a všude jinde nuly. Hlavní diagonála je jakoby „úhlopříčka“ zleva doprava. • Schodovitá matice je matice, která má nulové řádky na konci (nebo nemá žádné nulové řádky) a každý nenulový řádek má na začátku více nul než předchozí řádek.

  5. Symetrická matice je čtvercová matice A, která se splňuje rovnost A = AT. Prvky symetrické podle diagonály jsou stejné. Můžeme tak napsat, že aij = aji. • Antisymetrická matice je skoro totéž jako symetrická matice, akorát prvky na druhé straně mají opačné znaménko: A = −AT. Kvůli tomu musí být prvky na hlavní diagonále nulové, protože a = −a = 0.

  6. Diagonální matice je matice, která má nuly všude kromě hlavní diagonály. Přesněji řečeno všude jinde musí být nuly, co je na hlavní diagonále není specifikováno. • Matice transponovaná k matici A je matice AT, u které platí aij = aTji, tj. prvek který byl v i-tém řádku a j-tém sloupci bude v transponované matici na j-tém řádku a i-tém sloupci. Zkrátka zaměníte řádky matice za sloupce.

  7. Operace s maticemi • Sčítání (odčítání) matic: matice stejného typu (stejný počet sloupců a řádků) • Výsledná matice bude mít na stejných pozicích součty čísel na odpovídajících pozicích v předchozích maticích. • Sčítáme matice A + B = C, pak platí aij + bij = cij. • Sčítání matic je komutativní a asociativní. • A + B = B + A , A + (B + C) = (A + B) + C

  8. Násobení matic nenulovým reálným číslem: • Vezmete číslo a vynásobíte s ním každý prvek matice. • k· A = k· aij. • Násobení matic: (matice musí splňovat kritérium, že počet sloupců první matice musí být stejný jako počet řádků druhé matice) • Vezmete první řádek první matice a první sloupec druhé matice. • Vynásobíte první prvek s prvním prvkem a sečtete s násobkem druhého prvku s druhým prvkem a sečtete atd. • Tím získáte v nové matici C prvek c11.

  9. Nebo graficky:

  10. Příklady: Proveďte A + B, B – C, 2A – C, A * B, B* A, B * C - A

  11. Determinant matice • Definovaný pouze na čtvercových maticích • Číslo • Je zapisován buď jako det A nebo |A| • Sarrusovo pravidlo pro výpočet determinantu:

  12. Laplaceova metoda pro výpočet determinantu • Provádíme rozvoj podle nebo sloupce • Rozvoj provedeme buď přes druhý řádek nebo přes třetí sloupec, jelikož se zde nachází nula (případně nejvíce nul). • První číslo: 2 + 1, tj. vyškrtneme druhý řádek a první sloupec, tím získáme submatici

  13. Příklad: Vypočítej determinant matice Sarrusovým pravidlem a Laplaceovou metodou

  14. Využití determinantu matice při řešení soustavy rovnic • |A| je determinant matice bez pravé strany, tj. bez čísel za rovnítkem • |Ak| je determinant matice, která vznikne z matice A nahrazením k-tého sloupce čísly za rovnítkem

  15. Příklad: Řešte soustavy rovnic • 2x +3y = 4, x – y = 0 • x - y + 2z = 7, 2x - 3y + 5z = 17, 3x – 2y – z = 12 • x + 2y + 2z = 7, 2x + 3y = 7, x + 5y + z = 2

  16. Inverzní matice • Úpravoumatice a připojené jednotkové matice získáme matici jednotkovou a inverzní. • Značíme A-1 • Platí: A * A-1 = A-1 * A = E (jednotková matice) • Gauss - Jordanovou eliminační metodou

  17. Výpočet inverzní matice Gauss - Jordanova eliminační metoda Postup: • Vedle sebe napíšeme matici, kterou chceme invertovat a jednotkovou matici • Matici upravujeme na jednotkovou matici standardními způsoby: • záměna řádků • vynásobení řádku skalárem (nejčastěji přirozeným číslem) • přičtení násobku jednoho řádku k jinému • Každý úkon prováděný na upravované matici musíme provést i na jednotkové matici. • Zkoušku provedeme vynásobením matice s její inverzí.

  18. Příklad: Ověřte zda jsou matice k sobě inverzní

  19. Hodnost matice • Hodnost matice je počet lineárně nezávislých řádků matice, zpravidla se označuje h • Hodnost matice najdeme úpravami matice tak, že se snažíme vytvořit nulový řádek, který se v matici nezapisuje • Nulová matice má hodnost h = 0 • Hodnost matice se určuje u libovolné matice

  20. Příklad: Určete hodnost matice

  21. Využití inverzní matice – šifrování zprávy • Vezmeme čtvercovou matici druhého řádu - šifrovací

  22. Zpráva se zapíše po sloupcích do matice. • Matice se vynásobí zleva maticí šifrovací. • Zprávu sepíšeme po sloupcích a můžeme poslat. • Příjemce si najde inverzní matici k šifrovací

  23. Pomocí inverzní matice dešifrujeme zprávu: Poznámka: Zkuste šifrování pomocí matice třetího řádu.

  24. Využití matic - násobení • Hospodyně si vedla záznamy svých nákupů a vytvořila si tuto tabulku: • Potraviny se dají koupit v různých cenách • Určete cenu nákupu, nakoupíme-li v Tescu

  25. Využití matic • Čtyři města A, B, C, D jsou spojena autobusovými linkami. Přímé spojení je dáno tabulkou: • Nakreslete plán spojení

More Related