330 likes | 485 Views
Pentaquarks in Chiral Soliton Models. Bo-Qiang Ma Peking University August 17, 200 4, Talk at ICHEP04, Beijing. ?. In Collaboration with B. Wu Hep-ph/0312041, PRD69(2004)077501 Hep-ph/0312326, PLB586 ( 2004 ) 62
E N D
Pentaquarks in Chiral Soliton Models Bo-Qiang Ma Peking University August 17, 2004, Talk at ICHEP04, Beijing ? In Collaboration with B. Wu Hep-ph/0312041, PRD69(2004)077501 Hep-ph/0312326, PLB586(2004)62 Hep-ph/0311331, Hep-ph/0402244 Hep-ph/0408121 all to appear in PRD
Pentaquark States • Predictions of pentaquark states with both strange and charm (by Lipkin et al.), with no evidence found yet.
Prediction in Chiral Soliton Model pK0 or nK+
Suggestion for the existence of higher multipletsM.-L.Yan and X.-H.Meng,Commun. Theor. Phys. 24 (1995) 435 • The corrections to the Gell-Mann-Okubo relations of baryons masses in SU(3) Skyrmen model are considered. • The results could be regarded as a signal for the existence of the SU(3) rotation excitation states of baryons: 10*-let, 27-plet, and 35-let.
Nothing is “Exotic” in the Chiral Solition Picture • Baryons are “solitons” in the chiral meson fields. • No baryon is “exotic” except that it has different quantum numbers compared to other baryons.
“Exotic”-baryon (Pentaquark) DefinationH.Gao and B.-Q. MaMod. Phys. Lett. A 14 (1999) 2313 • A pentaquark qqqqq state can be clearly distinguished from the conventional qqq-baryon state or their hybrids if the flavor of q is different from any of the other four quarks: minimal Fock state of pentaquark • Possible existence of uudds and uuuds states are suggested. -
Suggestion for search of pentaquark uudds statein physics processH.Gao and B.-Q. MaMod. Phys. Lett. A 14 (1999) 2313 • Suggested: *n K-Θ+ missing mass method to construct Θ+ • SPring8 and CLAS experiments: sub-process n K-(K+n) an additional K+ is detected to reduce background for the missing mass spectrum and real photon is used instead of virtual photon.
world-average: M(Q+): 15322.4 MeV Summary of recent experiments (incomplete list)
no evidence forQ++ K+p in HERMES Suggesting Q+Being Isosinglet I=0 is likely I=2 is ruled out I=1 is unlikely, but cannot be ruled out X.Chen, Y.Mao, and B.Q.Ma, hep-ph/0407381
Pentaquark States from Theory:anti-decuplet in chiral soliton models-1st version
S Prediction of Diquark model R.L. Jaffe and F. Wilczek, PRL91 (2003) 232003 [ud]2s +(1530) 1 I3 -1 1 *0 -1 *- *0 3/2(1750) [ds]2u [us]2d
Evidence for New Pentaquark? pp *--X, *0X, - - -+ NA49 at CERN C. Alt et al., hep-ex/0310014 s = 17,2 GeV SM:M(*--) = 2070 MeV [qiqj]2q:M(*--) = 1750 MeV But: It is not what theory predicted ! D. Diakonov et al., hep-ph/0310212 1,862 0,002 GeV
Anti-Decuplet in Chiral Soliton Model - Version 2 D. Diakonov andV. Petrov hep-ph/0310212 B. Wu and Ma, hep-ph/0311331, PRD S uud ds +(1539) 1 I3 sdu.. duu(dd+ss) N(1647) -1 1 *0 108 MeV sdd.. sdu.. suu(dd+ss) (1754) -1 *- *0 3/2(1862) ssu.. ssd (uu+dd) ssd du ssu ud
Where are the missing members of antidecuplet? • For baryons with spin ½ and + parity, there is no N around, and a weak evidence for S(1770), so Diakonov and Petro (hep-ph/0310212) suggeted a missing N around 1650-1690 MeV; the position of N(1710) is not at M=1710 MeV, but some where around M=1650 to 1690 MeV, suggested by Arndt et al(nucl-th/0312126) . • We noticed ( hep-ph/9311331) that there are candidates of N(1650) and S(1750) with spin ½ and negative (–) parity, in PDG This maysuggest a negative parity for antidecuplet members in the chiral soliton model: parity in chiral solition has two parts: quantized part with positive parity and classical part with unknown parity; the collective coordinate quantization can not inevitably fix the parity of the corresponding baryons.
The width formula and the widths in the case of negative parity decay width is excellent for S(1750), but poor for N(1650) , possible solution: SU(3) breaking for baryons with strangeness, or there is a missing N resonance around 1650 with narrow width.
Theories of positive parity forQ+ • Chiral Soliton Models (old version) Diakonov-Petrov-Polyakov, ZPA359(1997)305 • Analysis in Quark Model Stancu-Riska, PLB575(2003)242 • Diquark Cluster Model Jaffe-Wilczek, PRL91(2003)232003 • Diquark-Triquark Model Karliner-Lipkin, PLB575(2003)249 • Inherent Nodal Structure Analysis Y.-x.Liu, J.-s.Li, and C.-g. Bao, hep-ph/0401197
Theories of negative parity forQ+ • Naive Quark Model Jaffe (1976) • Some Quark Models Capstick-Page-Roberts, PLB570(2003)185 Huang-Zhang-Yu-Zhou, hep-ph/0310040,PLB586(04)69. • QCD Sum Rules Zhu, PRL91(2003)232002, Sugiyama-Doi-Oka, hep-ph/0309271 • Lattice QCD Sasaki, hep-ph/0310014, Csikor et al, hep-ph/0309090, but we heard difference voices recently
Where is the answer? Experiment! • Many suggestions on detecting the parity Oh-Kim-Lee, hep-ph/0310019 Zhao, hep-ph/0310350 Liu-Ko-Kubarovsky, nucl-th/0310087 Nakayama-Tsushima, hep-ph/0311112 Thomas-Hicks-Hosaka, hep-ph/0312083 …… • Measurement of parity is crucial to test theories
What else if I=0 or s=1/2 / / • Answer: Most theories would need revision!
Predictions of New Pentaquarks-27-plet Figure from Wu & Ma, PRD69(2004)077501.
The widths of the 27-plet baryons SU(3) Symmetric Case
The picture of the 27-plet baryons:non-exotic members are well established We suggest that the quantum numbers ofX(1950) is JP=(3/2)+
Predictions ofQ* • Walliser-Kopeliovich, hep-ph/0304058 mass=1650/1690 MeV • Borisyuk-Faber-Kobushkin, hep-ph/0307370 mass=1595 MeV, width=80 MeV • Wu-Ma, PLB586(2004)62 mass=1600 MeV, width less than 43 MeV
Predictions of New Pentaquarks-35-plet Figure from Wu & Ma, hep-ph/0408121, PRD, to appear
The widths of the 35-plet baryons SU(3) Symmetric Case
Prediction of Pentaquarks in SU(4) Chiral Solition Model B.Wu and B.-Q.Ma, hep-ph/0402244, PRD to appear
Experiment Evidence at H1 hep-ex/0403017
The pentaquark uuddc _ • Prediction of the mass of the ground uuddcbar: m=2704 MeV, as pD state Wu-Ma, hep-ph/0402244 • Observation by H1 Collaboration: m=3099 MeV hep-ex/0403017 can be considered as pD* state • From M(D*-D)~300 MeV, the observed uuddcbar can be considered as an excited state (chiral partner) of the predicted ground pentaquark state M. Nowak et al, TPJU-4/2004, BNL-NTBNL-NT-04/10
Conclusions • The reported pentaquark Q+is still not yet established as a member of a well-defined anti-decuplet in chiral soliton models. • The non-exotic members of 27-plet and 35-plet in the chiral soliton models are found to exist in the available PDG listing. • There should be new pentaquark states, if the chiral soliton picture is correct.