280 likes | 381 Views
ESTATÍSTICA. UDIII - Relação Entre Duas ou Mais Variáveis. ESTATÍSTICA. Ass 02: Regressão Múltipla (2 a Parte). OBJETIVOS ESPECÍFICOS. Calcular um intervalo de 95% de confiança para cada coeficiente angular do verdadeiro plano de regressão.
E N D
UDIII - Relação Entre Duas ou Mais Variáveis ESTATÍSTICA Ass 02:Regressão Múltipla (2a Parte)
OBJETIVOS ESPECÍFICOS • Calcular um intervalo de 95% de confiança para cada coeficiente angular do verdadeiro plano de regressão • Calcular o valor-p para a hipótese nula =0 e para a hipótese nula =0 • Predizer sobre a variação de Y considerando a variação de um ou mais regressores.
SUMÁRIO 1- Intervalos de Confiança e Testes Estatísticos 2. Coeficientes de Regressão como Fatores de Ampliação
1. Intervalos de Confiança e Testes Estatísticos a. Erro Padrão Tal como na regressão simples, a verdadeira relação de Y para X é avaliada pelo coeficiente populacional, desconhecido, : estimamo-lo por meio do coeficiente amostral b. Enquanto que o verdadeiro é um valor fixo, a estimativa b varia de amostra para amostra, flutuando em torno do alvo com distribuição aproximadamente normal.
Fig.1- Distribuição Amostral de b p(b) Valor esperado = b
Da mesma forma, a verdadeira relação de Y para Z é avaliada pelo coeficiente angular populacional, desconhecido, : estimamo-lo por meio do coeficiente angular amostral c. Enquanto que o verdadeiro é um valor fixo, a estimativa c varia de amostra para amostra, flutuando em torno do alvo com distribuição aproximadamente normal. O erro padrão de b e o erro padrão de c são em geral calculados conjuntamente com os próprios valores de b e de c, através de soluções computadorizadas.
Tab 1. Coeficientes, Erros Padrão e Razões t Calculados através do Excel Coeficiente Erro Padrão Razão-t 11,27652 6,531973 5,400617 2,491482 0,005832 0,154303 28,09524 0,038095 0,833333 Interseção Fertilizante Nível Pluv
b. Intervalos de Confiança Para k regressores: g.l.= n-k-1
Exemplo 1: Com base nos dados computadorizados da Tab.1, calcule um intervalo de 95% para cada coeficiente de regressão. Solução:
c. Valor-p A razão para testar =0 é, como de costume, Da mesma forma, a razão para testar =0 é,
Exemplo 2: Com base nos dados computadorizados da Tab.1, calcule o valor-p para a hipótese nula =0 (o fertilizante não influi na safra) Solução: Ou, equivalentemente, podemos ter a mesma razão-t na última coluna da Tab.1 Com tão pequena credibilidade, podemos rejeitar H0: concluímos que o fertilizante contribui, realmente, para aumentar a safra.
Exemplo 3: Com base nos dados computadorizados da Tab.1, calcule o valor-p para a hipótese nula =0 (a precipitação pluviométrica não influi na safra) Solução: Ou, equivalentemente, podemos ter a mesma razão-t na última coluna da Tab.1 Com tão pequena credibilidade, podemos também aqui rejeitar H0: concluímos que a chuva contribui para aumentar a safra.
Costuma-se resumir os cálculos dos exemplos 2 e 3 dispondo-os em forma de equação, como se segue:
2. Coeficientes de Regressão como Fatores de Ampliação. a) Regressão Simples 70 60 50 40 30 Y Y=36+0,06X b=variação de Y correspondente a uma variação unitária de X Variação de Y=b(Variação de X) 100 200 300 400 500 600 700 X Fig.2–Interpretação do coeficiente angular
Em estudos observacionais não-controlados coeficiente de regressão simples b nada prova quanto à causalidade. O aumento de Y correspondente a um aumento unitário de X reflete não só o efeito de X mas também o efeito de todas as variáveis estranhas que estejam se modificando simultaneamente. Para determinar especificamente o efeito de X sobre Y, devemos apelar para a regressão múltipla.
Yinicial = a + bX + cZ Ynovo = a + b(X+ X) + cZ Y = b X 2. Coeficientes de Regressão como Fatores de Ampliação. b) Regressão Múltipla: “Outros Fatores Mantidos Iguais” Y= a + bX + cZ Se Z permanece constante, ainda é verdade que Y = b X:
Se o outro regressor Z permanece constante, Variação de Y = b (Variação de X) Consideremos, por exemplo, o caso da safra de trigo: Y = 28 + 0,038X + 0,83Z Qual seria o aumento da safra Y correspondente a um aumento de 5 lb do fertilizante X, supondo inalterada a precipitação pluviométrica? Variação da safra = 0,038(5) = 0,19 bushel
Generalizando para o caso de k regressores: Se Y = a + b1X1 + b2X2 +...+bkXk então b1 = variação de Y correspondente a uma variação unitária de X1, quando todos os outros regressores permanecem constantes
Que ocorre se todos os regressores X variam simultaneamente? A variação em Y é apenas a soma das variações individuais: Se Y = a + b1X1 + b2X2 +...+bkXk então Y = b1 X1 + b2 X2 +...+bk Xk
Exemplo 4: As regressões simples e múltipla da safra sobre o fertilizante e a precipitação pluviométrica (chuva) são: SAFRA = 36 + 0,059 FERT SAFRA = 30 + 1,50 CHUVA SAFRA = 28 + 0,038 FERT + 0,83 CHUVA
a) Se um fazendeiro acrescenta 100 lb de fertilizante por acre, qual o aumento de safra que pode esperar? Solução: Quando o fazendeiro aumenta o fertilizante, não está modificando a precipitação pluviométrica em sua fazenda. Portanto, é a regressão múltipla que importa: 0,038(100) = 3,8 bushels
b) Se ele irriga com 3 polegadas de água, qual o aumento de safra que pode esperar? Solução: Quando aumenta a água através de irrigação, o fazendeiro não está modificando o fertilizante em sua fazenda. Portanto, novamente aqui o que importa é a regressão múltipla: 0,83(3) = 2,5 bushels
c) Se ele acrescenta 100 lb de fertilizante por acre e, simultaneamente, irriga com 3 polegadas de água, qual o aumento de safra que pode esperar? Solução: Quando os dois regressores variam simultaneamente: Y = 0,038(100) + 0,83(3) Y = 3,8 + 2,5 Y = 6,3 bushels
d) Já observamos que uma aplicação elevada de fertilizante tende estar associada a uma a uma alta precipitação pluviométrica, nos dados em que foram calculadas essas três equações de regressão. Persistindo esta mesma tendência, qual o aumento de safra que se poderia esperar em um acre que recebesse mais 3 polegadas de água do que outro?
Solução: Não utilizaremos o coeficiente 0,83 ( regressão múltipla) porque o mesmo mostra como a safra aumenta em função da chuva somente (com o fertilizante constante). Em lugar disso, usaremos o coeficiente 1,50 que mostra como a safra aumenta com a chuva quando o fertilizante também varia: 1,50(3) = 4,5 bushels
Resumindo: O resultado da letra d) (4,5 bushels) é maior do que o da letra b) (2,5 bushels) porque este coeficiente de regressão simples (1,50) mostra como a safra é afetada pela precipitação pluviométrica e pelo aumento associado de fertilizante. Observações:Admitimos que a irrigação artificial tivesse o mesmo efeito que a queda de chuva. Se tal hipótese não é justificada, as previsões em b) e c) podem estar bem longe da realidade.
PRATIQUE COM OS EXERCÍCIOS . BOA SORTE!