290 likes | 439 Views
4th International Seminar on High Energy Physics QUARKS'2006 Repino, St.Petersburg, Russia, May 19-25, 2006. Black hole solutions in N>4 Gauss-Bonnet Gravity. S.Alexeyev* 1 , N.Popov 2 , T.Strunina 3 1 S ternberg Astronomical Institute, Moscow, Russia
E N D
4th International Seminar on High Energy Physics QUARKS'2006Repino, St.Petersburg, Russia, May 19-25, 2006 Black hole solutions in N>4 Gauss-Bonnet Gravity S.Alexeyev*1, N.Popov2, T.Strunina3 1Sternberg Astronomical Institute, Moscow, Russia 2Computer Center of Russian Academy of Sciences, Moscow 3Ural State University, Ekaterinburg, Russia
Main publications • S.Alexeyev and M.Pomazanov,Phys.Rev.D55, 2110 (1997) • S.Alexeyev, A.Barrau, G.Boudoul, M.Sazhin, O.Khovanskaya,Astronomy Letters 28, 489 (2002) • S.Alexeyev, A.Barrau, G.Boudoul, O.Khovanskaya, M.Sazhin,Class.Quant.Grav. 19, 4431 (2002) • A.Barrau, J.Grain, S.Alexeyev, Phys.Lett.B584, 114 (2004) • S.Alexeyev, N.Popov, A.Barrau, J.Grain, Journal of Physics: Conference Series 33, 343 (2006) • S.Alexeyev, N.Popov, T.Strunina, A.Barrau, J.Grain, in preparation
Fundamental Planck scale shift • Large extra dimensions scenario (MD – D dimensional fundamental Planck mass, MPl – 4D Planck mass) MD = [MPl2/ VD-4]1/(D-2)
Planck energy in 4D representation ↓ 1019 GeV Fundamental Planck energy ↓ ≈ 1 TeV Planck Energy shift
Extended Schwarzschild solution in (4+n)D Tangherlini, ‘1963, Myers & Perry, ‘1986 Metric: ds2=-R(r)dt2+R(r)-1dr2+r2dΩn+22 Metric function: R(r) = 1 – [rs / r]n+1
(4+n)D Low Energy Effective String Gravity with higher order (second order in our consideration) curvature corrections S=(16πG)-1∫dDx(-g)½[R + Λ +λ SGB + …] Gauss-Bonnet term SGB = Rμναβ Rμναβ – 4Rαβ Rαβ + R2
Einstein-GB equations R.Cai, ‘2003 Rµν - ½ gµνR - Λgµν – α(½ gµνSGB – 2 RRµν + 4 RµγRγν + 4 RγδRγµδν– 2 RµγδλRνγδν) = 0 SGB = Rμναβ Rμναβ – 4Rαβ Rαβ + R2
(4+n)D Schwarzschild-Gauss-Bonnet black hole solution (Boulware, Dieser, ‘1986, R.Cai, ‘2003) • Metric representation: ds2 = - e2ν dt2 + e2α dr2 + r2 hij dxi dxj • Metric functions:
Mass and Temperature • Mass • Temperature
Hawking Temperature Twith GB/Twithout GB M/MPl Twith GB/Twithout GB M/MPl
“Toy model” (4+n)D Kerr-Gauss-Bonnet solution with one momentum (“degenerated solution”). Necessity: to compare with the usual Kerr one in the complete range of dimensions: N=5,…,11
“Degenerated” solution ds2 = - (du + dr)2 + dr2 + ρ2dθ2 + (r2 + a2) sin2θdφ2 + 2 a sin2θ dr dφ + β(r,θ) (du – a sin2θ dφ)2 +r2cos2θ (dx52 + sin2x5 (dx62 + sin2x6 (…dxN2)…) here β(r,θ) is the function to be found, ρ2 = r2 + a2 cos2θ N.Deruelle, Y.Morisawa, Class.Quant.Grav.22:933-938,2005, S.Alexeyev, N.Popov, A.Barrau, J.Grain, Journal of Physics: Conference Series 33, 343 (2006)
(UR) equation for β(r,θ) [h1(r) β + h0(r,θ)] (dβ/dr) + [g2(r,θ) β2 + g1(r,θ) β + g0 (r,θ)] = 0 For 6D case, for example h1 = 24 α r3 h0 = r ρ2 (r2 + ρ2) g2 = 4 α (3r4 + 6 r2 a2 cos2θ – a4 cos4θ) / ρ2 g1 = (r2 + ρ2) (2r2 + ρ2) g0 = Λ r2ρ4
Behavior at the infinity Λ = 0 β(r,θ) μ/[rN-5 (r2 + a2 cos2θ)] + … Λ ≠ 0 β(r,θ) C(N) Λ r4/ [r2 + a2 cos2θ] + …
Behavior at the horizon β(r,θ) = 1 + b1(θ) (r - rh) + b2(θ) (r – rh)2 + … For 6D case b1 = [4 α (3 rh4 + 6 rh2 a2 cos2θ – a4 cos4θ) (rh2 + a2 cos2θ)-1 + (2 rh2 + a2 cos2θ) (3 rh2 + a2 cos2θ) + Λ rh2 (rh2 + a2 cos2θ)2]/[24 α rh3 + rh (2 rh2 + a2 cos2θ)]
Usual form of metric ds2 = - dt2 (1 – β2) + dr2 [(r4(1 – β2) + a2 (r2 + β2a2cos4θ) / Δ2] + ρ2dθ2 – 2aβ2sin2θ dtdφ + dφ2 sin2θ [r2 + a2 + a2β2 sin2θ] + r2 cos2θ (dx5 + …) Δ = r2 + a2 - ρ2 β2 ρ2 =r2 + a2 cos2θ
Mass & angular momentum • Mass M = µ (N-2) AN-2/16πG where AN-1 = 2 πN/2/Γ(N/2) • Angular momentum Jyixi = 2 M ai/N the same as in pure Kerr case
6D plot of β=β(r,a ∙ cosθ) in asymptotically flat case (Λ=0), λ=1
While considering “degenerated solution” there are no any new types of particular points, so, there is no principal difference from pure Kerr case all the difference will occur only in temperature and its consequences
Number of angular momentums According to the existence of [Ns/2] Casimirs of SO(N) (Ns is the number of space dimensions) • For N=4 (Ns=3) there is 1 moment • For N=5 (Ns=4) there are 2 moments • For N=6 (Ns=5) there are 2 moments • For N=7 (Ns=6) there are 3 moments • For N=8 (Ns=7) there are 3 moments • For N=9 (Ns=8) there are 4 moments • For N=10 (Ns=9) there are 4 moments • For N=11 (Ns=10) there are 5 moments
5D Kerr metric (complete version) ds2 = dt2 - dr2 - (r2+a2) sin2θ dφ1 - (r2+b2) cos2θ dφ2 – ρ2 dθ2 - 2 dr (a sin2θ dφ1 + b cos2θ dφ2) - β (dt – dr – a sin2θ dφ1 - b cos2θ dφ2) Where ρ2 = r2 + a2 cos2θ + b2 sin2θ, β = β(r, θ) is unknown function a, b - moments
θθ component A β’’ + B β’2 + C β’ + D β + E = 0 Where A = r ρ2 (4 αβ – ρ2) B = 4 α r ρ2 C = 2 [ 4 αβ (ρ2 - r2) – ρ2 (ρ2 + r2) ] D = 2 r (2 r2 – 3 ρ2) E = 2 r ρ4Λ
Solution manipulations This equation could be divided into 2 parts • A(r,ρ)β’’+B(r,ρ)β’+C(r,ρ)β+D(r,ρ,Λ)=Z(r,ρ,β) • E(r,ρ)(ββ’)’+F(r,ρ)(ββ’) =Z(r,ρ,β)
6D metric ds2 = dt2 -dr2 –sin2ψ [(r2+a2)sin2θdφ12 +(r2+b2)cos2θdφ22] -(r2+a2cos2θ+b2sin2θ)sin2ψdθ2 - [r2+(a2sin2θ+b2cos2θ)cos2ψ]dψ2 -2drsin2ψ(asin2θdφ1+bcos2θdφ2) +2(b2 - a2)sinθcosθsinψcosψdθdψ -β(r,θ,ψ) [dt–dr–sin2ψ(asin2ψdφ1 +bcos2θdφ2)]2
Conclusions Taking into account 5D case one can see that in the general form of Kerr-Gauss-Bonnet solution there are no any new types of particular points, so, there is no principal difference from pure Kerr case all the difference will occur only in temperature and its consequences
Thank you for your kind attention! And for your questions!