370 likes | 519 Views
April 14, 2014 ECEN 5341,2013 Electroporation and Electric Shock. . Frank Barnes. ROS. Electroporation. 1. High electric fields short pulse duration to punch holes in membranes. 2. This allows us to pass molecules into the cell such as DNA and chemo therapeutic agents into a cell.
E N D
April 14, 2014 ECEN 5341,2013 Electroporation and Electric Shock . Frank Barnes
Electroporation • 1. High electric fields short pulse duration to punch holes in membranes. • 2. This allows us to pass molecules into the cell such as DNA and chemo therapeutic agents into a cell
An Electroporation System • Gene PulserXcell™ Electroporation Systems
Pulse Characteristics • 1. Creating a small hole in the membrane. • 2. Pulses 0.2V<V< 1V 1µs<τ<50ms • E Membrane εm =2-4εo Cell interior εi =50-80εo
Pulse Characteristics • 1. Times greater than 1µs required to concentrate the charges and fields. • 2. Fields greater than 0.1KV/cm often greater than 1KV/cm. Field varies with position on the cell surface. • 3. High fields and short pulses give the best results
Pore Formation 4 Stages • 1. Charging the membrane • 2. Constant Voltage Vm , small currents • 3. Fluctuating current as transition to long lived excited state,10minutes large σ, low V • 4. Increase in pulse length leads to saturation and irreversible damage. log10τm ~ Vm
Reversible Pore Formation • 1. Vm≈ 1V τm≈ 400ns rp≈ 0.8nm • 2. R drops by 10-9 • 3. Rapid discharge and the membrane reforms. • 4. Relaxation times for a fluid τf=εf/σf • for saline τfτ≈ 0.5ns much less than the charging time Vm50µs 0.4
Energy • 1 Energy of a charge in the medium The essential barrier function of cell membranes can be represented by a thin sheet of lipid. To move a charge through the membrane
Forces • 1. E Fields on the Membranes are a function of time. Increase and then Decrease • 2. Force the opening in the pores that expand with time. • 3. E fields drive currents and carry along neutral molecules.
Membrane Recovery • 1. Reported times vary from nanoseconds to minutes or hours. • 2. Strongly depends on Temperature • 3. Depends on the size of the pore also on what molecules or ions are being transported.
Cell Stress And Survival • 1. Cell survival and stress are mainly to exchange of molecules with the environment. Chemical or ion imbalances. • 2. Cells can be killed without significant heating. • 3. There is a fuzzy threshold for the transport of molecules into or out of the cells and not a large margin to cell death. • 4. Transport is not very selective with respect to molecules or ions. • 5. Survival seems to go with the ratio of the external volume to the internal volume of the cell. In vitro Vex/Vin is large and favors cell death In vivo it is the reverse with Vex/Vin≈0.15 • 6. This mean that in vivo cell damage for the same pulses are less likely.
Tissue Electroporation and In Vivo Delivery • 1 A purposeful electroporation of tissue in vivo and in vitro has been motivated by therapeutic interventions such as tumor treatment by delivery of anticancer drugs ,gene therapy by delivery of DNA, and other genetic material and delivery of various sized molecules into and across the skin • 2. Also tissue electroporation may be relevant to • neuromuscular incapacitation (stunning) pulses
Voltage Concentration in Tissue • 1. Voltage concentration in tissue needs to be across the membranes. • 2. For preferential electroporation, two features should be sought: (I) tissue barriers comprised mainly of lipids and (ii) mechanical deformability (compliance) of membranes comprise of the particular lipids so that the electrostatically favored entry of water into a deformable phospholipid-based membrane results in the creation of aqueous pathways.
Current Flows in Tissue. • 1. At low fields most of the current flows around the cell membranes. • 2. After electroporation much of the current flows through the cell. • 3 Tumor tissue is an important example of tissue for which many cells have intercellular aqueous pathways. Even without electroporation there is a significant physiological resistance to entry of anticancer drugs because of limited blood perfusion, elevated interstitial pressure, and relatively large distances to blood vessels
Application to Tumors. • 1.Without electroporation there is a significant physiological resistance to entry of anticancer drugs because of limited blood perfusion, elevated interstitial pressure, and relatively large distances to blood vessels 2. Local tissue electroporation should create aqueous pathways that assist drug movement and that may also relieve pressure, but the fourth power dependence of volumetric flow on pathway size implies that significant water flow may be more difficult than diffusion and drift of small drugs.
Applications • 1. Electroporation has value largely in cancer treatment for drugs that to not go through the membranes naturally. Bleomycin is an example where electroporation helps. • 2. Transdermal Drug delivery through skin. • The stratum corneum is the main barrier plus sweat ducts and hair follicles. • 3. The double cell lining of sweat ducts should experience electroporation at about Ubarrier 2 to 4 V, but the approximately 100 bilayers of the SC need Ubarrier50 to 100V for pulses with duration of 100 ms to 1 ms, i.e., about 0.5 to 1V per lipid bilayer
Skin • Experiments of this type with human skin show that if exponential pulses with Voltage across SC,0 50 to 300V and time constant, t, pulse 1 ms are applied every 5 s for 1 h, then there is an enhancement by up to a factor of 104in the flux of charged molecules of up to about 1 kDaCompanion electrical impedance measurements show a rapid (25 ms) decrease in skin resistance and both molecular flux and electrical measurements show that either reversible or irreversible behavior occurs, depending on the transdermal pulse amplitude, Voltage SC, 0. Several in vivo experiments show that transdermal delivery can be achieved with minimal damage.
Gene Therapy • 1. Gene therapy also requires movement of large molecules through the cell walls. • 2. You only need succeed with some of the cells to be effective. Smaller longer pulses. • 3. Concerns about damage. • 4. Surfactants can improve membrane recovery.
Electroporation of Organelles • 1 Short high field pulses (ns) Um= 1.2V • E= 106V/m • 2. Many small pores in outer membrane as well as in the organelle
Electric Shocks Trauma • 1. 21% of the burns in 2000-2001 • 2. Electrocution 5th leading cause of death for occupational injuries • 3. More than 90% of these injuries for utility workers occur in men, mostly between the ages of 20 and 34, with 4 to 8 y of experience on the job [4]. • 4. For survivors, the injury pattern is very complex, with a high disability rate due to accompanying neurologic damages and loss of limbs.
Low Voltage Shocks 1. Low voltage shocks < 1000 V mostly minor neural damage. • 2.Low-voltage shocks are more likely to produce a prolonged, ‘‘no-let-go’’ contact with the power source. This ‘‘no-let-go’’ phenomenon is caused by an involuntary, current-induced, muscle spasm. For 60 Hz electrical current the ‘‘no-let-go’’ threshold for axial current passage through the forearm is 16 mA for males and 11 mA for females
Lightning • There are roughly 200 human deaths annually in the United States due to lightning strikes and there are three times those many who survive. The range of lightning injury extent is quite broad, depending upon the magnitude of exposure and the condition of the victim. Usually lightning hits result in surface burns, complex neurological damage similar to blunt head trauma, peripheral neurologic injury, and cardiac damage
Current Flow +RF • 1 Current flow is along the paths of low resistance. In the extra cellular medium and in long cells as they have a small fractional volume of membrane. • 2. At RF and Microwaves membranes are less of barrier and the absorption coefficient and dielectric constants. determine the distributions of currents.
AC vs DC • Alternating current (AC) is more dangerous than direct current (DC), and 60-cycle current is more dangerous than high-frequency current. AC is said to be four to five times more dangerous than DC because AC causes more severe muscular contraction. In addition, AC stimulates sweating that lowers the skin resistance. Humans and animals are most susceptible to frequencies at 50 to 60 hertz because the internal frequency of the nerve signals controlling the heart is approximately 60 hertz.(Electric Shock Precautions)
Safety Guide Lines • 1 The National Electrical Code (NEC) in the U.S. considers 5 mA (0.005Amps) to be a safe upper limit for children and adults; hence the 5 mA Ground Fault Interrupter (GFI) circuit breaker requirement for wet locations. (The Physical Effects of Electricity)The values in Table 1 should be used as a guide instead of absolute data points. For instance, 99% of the female populations have a “let go” limit above 6 mA with an average of 10.5 mA. 99% of the male populations have a “let go” above 9 mA, with an average of 15.5 mA. (The Physical Effects of Electricity) Ventricular fibrillation can occur at current levels as low as 30 mA for a two year old child and 60 mA for adults. Most adults will go into ventricular fibrillation at hand to hand currents below 100 mA (0.1 Amp). (The Physical Effects of Electricity)
Will the 120 volt common household voltage produce a dangerous shock? It depends! • If your body resistance is 100,000 ohms, then the current which would flow would be: • I = 120 volts = .0012 A = 1.2 mA • 100,000 Ω • This is just about at the threshold of perception, so it would only produce a tingle. • If one had just played a couple of sets of tennis, and is sweaty and barefoot, then the resistance to ground might be as low as 1000 ohms. Then the current would be: • I = 120 volts = .12A = 120 mA • 1,000 Ω • This is a lethal shock, capable of producing ventricular fibrillation and death! The severity of shock from a given source will depend upon its path through the body. • (Nave & Nave)
Body Resistance Table 2 shows some of the typical human body resistances to electrical current. Barring broken skin, body-circuit resistance, even in contact with liquid, will probably be not less than 500 ohms. However, the current flow at this resistance and 120 volts is 240 mA—over twice what is required to cause death.(Biological Effects of Electric Shock)
Tissue Damage Thresholds 1KV/cm to 60 V/cm for long nerve or muscle cells
Electrical Damage • A burn from electrocution is much different than a burn from scalding or fire. Fleshy tissue is destroyed at 122° F and vascular tissue serving the nerves suffers damage at considerably less. Victims of industrial high-voltage accidents will present to the emergency room with obvious thermal destruction at the skin contact points. The extremities may be slightly swollen and otherwise without visible surface damage. Yet beneath the involved skin, the skeletal muscle will often exist in a state of severe unrelenting spasm or rigor. There will be frequently marked sensory and motor nerve malfunction. Within the first week after injury, many victims will undergo sequential surgical procedures to remove damaged nonviable skeletal muscle, resulting in a weak, stiff extremity that is often anesthetic because of nerve damage, and cold because of poor circulation. Under these circumstances, the patient is better off by undergoing amputation and then receiving a prosthetic extremity. (R. Lee 223-230)
Muscle Damage • In general, muscle and nerve appear to be the tissues with the greatest vulnerability to injury by electrical current. There is a characteristic skeletal muscle tissue injury pattern in victims of high-voltage electrical shock which is relatively unique to shock victims. Muscle adjacent to the bone and joints is recognized clinically to be the most vulnerable to electrical trauma. In addition, muscle cells located in the central region of the muscle may also be vulnerable and nerves seem to have a lower threshold for damage than muscle. • (R. Lee 223-230)