1 / 16

Third harmonic imaging of plasmonic nanoantennas

Andreas Trügler , Ulrich Hohenester Karl-Franzens-Universität Graz, Austria. Third harmonic imaging of plasmonic nanoantennas. Work performed together with : T. Hanke, J. Cesar, R. Bratschitsch , A. Leitenstorfer Lehrstuhl für Moderne Optik und Quantenelektronik, Univ. Konstanz.

filia
Download Presentation

Third harmonic imaging of plasmonic nanoantennas

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Andreas Trügler, Ulrich Hohenester Karl-Franzens-Universität Graz, Austria Third harmonic imaging of plasmonicnanoantennas Work performedtogetherwith: T. Hanke, J. Cesar, R. Bratschitsch, A. Leitenstorfer Lehrstuhl für Moderne Optik und Quantenelektronik, Univ. Konstanz

  2. Goal of this work Tailoringspatiotemporallightconfinement in singlenanoantennas… 200 nm Agenda • - Optical antennas, experiments • Simulation of metallic nanoparticles • THG mappingofparticleplasmons 200 nm

  3. Nanoantennasasnonlinearemitters Hyper-Rayleigh scattering at surface imperfections, see M. Stockman et al., PRL 92, 057402 (2004) Linear optics: Resolution givenbywavelengthl Nonlinearoptics (THG): Resolution givenbyl / 3 Excitation vs. Detection: Wavelengthdifference Strong χ(3)nonlinearityforgold, see T. Hanke et al., PRL 103, 257404 (2009)

  4. Imaging withoptical antennas Substrate THG intensity ~ | E |6 E THG Pump laser pulse 0.97 eV, 24 fs Array of nanoantennas Byscanningtheexcitationspotoverthe sample andobservingthe THG signal (in thefarfield), weobtain a mapoftheelectricfieldsoftheparticleplasmons. See S. Kim et al., High-harmonic generation by resonant plasmon field enhancement, Nat. Lett. (2008); T. Hanke, R. Bratschitsch, A. Leitenstorfer @ Univ. Konstanz, Germany (2011).

  5. THG mappingofparticleplasmons Third harmonic generation (THG) map (left) and sample (right) Excitation with fs – pulses and with a bandpass filter for wavelengths 1100 – 1500 nm T. Hanke, R. Bratschitsch, A. Leitenstorfer @ Univ. Konstanz, Germany (2011).

  6. THG mappingofparticleplasmons T. Hanke, R. Bratschitsch, A. Leitenstorfer @ Univ. Konstanz, Germany (2011).

  7. THG intensityforparticleplasmons Lowestantennavolume giveshighestTHG intensity !?

  8. Boundaryelementmethod (BEM) Discretizationofsurface integral into „boundaryelements“ Collocationmethod … surfacechargeslocatedatcentersofboundaryelements fromboundaryconditions… F. J. García de Abajo et al., PRB 65, 115418 (2002); U. Hohenester et al., PRB 72, 195429 (2005).

  9. THG mappingofparticleplasmons Simulation ofantennastructures Resultfromexperiment Size ofeachtriangle ca. 300 nm, discretisationwith 20.000 surfaceelements

  10. THG intensityforparticleplasmons Lowestantennavolumegiveshighest THG intensity !? Scatteringintensitygeneratedbyelectromagneticfieldsatthesurface… Incoherentoptics: Biggestvolumegiveshighestintensity… Coherentoptics: Lowestvolumesgiveshighestintensity…

  11. THG autocorrelation Autocorrelation allows to measure dephasing time of particle plasmons THG autocorrelationintensitydepends on time delaybetweenfemtosecondpulses

  12. THG autocorrelation Autocorrelationallowstomeasuredephasing time ofparticleplasmons harmonicfields Insert harmonicfieldstogetherwithplasmondamping time: damping twointeractingpulses in / out ofphaseratiogives 32:1 THG autocorrelationintensitydepends on time delaybetweenfemtosecondpulses

  13. THG autocorrelation Autocorrelation allows to measure dephasing time of particle plasmons Dephasingtimes: rod 5.5 fs ellipse 3.5 fs disc 2.0 fs THG autocorrelationintensitydepends on time delaybetweenfemtosecondpulses Weak plasmon damping effective build-up of the plasmonoscillation Knowledge of the plasmon damping time alone suffices to predict the nonlinear intensity !

  14. THG intensity vs. plasmondephasing THG intensitydirectlyscaleswithplasmondephasing ! Long dephasingtimescorrespondto large THG intensities 30 47 64 81 98 115 132 149 166 183 200 high nonlinear emission connected to small antenna volumes radiative damping! rodlength: 300 nm gap: 50 nm

  15. THG intensity vs. plasmondephasing THG intensitydirectlyscaleswithplasmondephasing ! Long dephasingtimescorrespondto large THG intensities

  16. Summary & Acknowledgement TheoreticalNanoscience Ulrich Hohenester Jürgen Waxenegger KFU Graz, Austria Temporal scale: Measuring few-fs plasmon damping times Spatial scale: Mapping of third-harmonic emission Radiative damping: Lowest volumes generates strongest third-harmonic emission Moderne Optik und Quantenelektronik Alfred Leitenstorfer Rudolf Bratschitsch Tobias Hanke Vanessa Knittel Julijan Cesar High intensity linked to smallest antenna volume!

More Related