1 / 40

Light and Heavy Hadronic Modes in Medium

Light and Heavy Hadronic Modes in Medium. Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Universit ät Bielefeld , 11.01.05. 1. Motivation: Relativistic Heavy-Ion Collisions. e + e -. J/ y. r. Au + Au. g. QGP ?!.

gabe
Download Presentation

Light and Heavy Hadronic Modes in Medium

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Light and Heavy Hadronic Modes in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Universität Bielefeld, 11.01.05

  2. 1. Motivation:Relativistic Heavy-Ion Collisions e+ e- J/y r Au + Au g QGP ?! Hadron Gas “Freeze-Out” • Signatures of the QGP? • Suppression of J/y-Mesons • Decays of r-Mesons • Photons … Au + Au → X

  3. 1.2 Current Status:Towards QGP Discovery • So far: RHIC observables • ↔bulk properties of the produced matter: • - energy densitye≈20GeVfm-3↔ jet quenching(high-pt) • - thermalization + EoS↔ hydrodynamics (v0,v2) • - partonic degrees of freedom↔ coalescence (p/p,v2-scal) • Future: need to understand • microscopic properties (phasetransition, “QGP” !?): • - Deconfinement ↔quarkonia (J/y,, …) • - Chiral Symmetry Restoration↔ dileptons • ( - temperature ↔ photons )

  4. Outline 1. Introduction 2. Vacuum: Chiral Symmetry (Breaking) 3. (Light) Hadrons below Tc 3.1 Mesons: 0± (p-s), 1± (r-a1) , Baryons: N, D(1232) 3.2 Towards Chiral + Resonance Scheme 3.3 URHICs: Dileptons + Photons 4. Heavy-Quark Modes 4.1 Charmed Hadrons below Tc 4.2 Heavy-Quark Equilibration 4.3 Quarkonia in the QGP 4.4 URHICs: Suppression vs. Regeneration 5. Conclusions

  5. qR qL • Profound Consequences: • energy gap: • ↔ mass generation! • massless Goldstone bosonsp0,± • “chiral partners” split,DM≈0.5GeV: > > > > - - qR qL JP=0±1± 1/2± 2.) Chiral Symmetry in QCD:Vacuum SU(2)L× SU(2)R invariant (mu,d≈0) - Spontaneous Breaking:strongqqattraction  Bose Condensate fillsQCD vacuum! [cf. Superconductor: ‹ee›≠0 Magnet ‹M›≠0 , … ]

  6. a=1±(qq) (qqq) Chiral breaking: Q2 < (1.5-2 GeV)2 , J± < 5/2 (?!) 2.1 Light Hadrons: Vacuum Correlation Function: Timelike (q2>0) : ImPa(q0,q) → physical excitations

  7. lattice QCD - cm ‹qq› 1.0 T/Tc cPTmany-bodydegrees of freedom?QGP (2 ↔ 2)(3-body,...) (resonances?) consistentextrapolatepQCD 0 0.05 0.3 0.75 e[GeVfm-3] 120, 0.5r0 150-160, 2r0 175, 5r0 T[MeV], rhad 2.2 “Melting” the Chiral Condensate • Excite vacuum (hot+dense matter) • quarks “percolate” / liberated •  Deconfinement • ‹qq›condensate “melts”, ciral Symm. • chiral partners degenerate Restoration • (p-s, r-a1, … medium effects → precursor!) - How?

  8. 3. Hadrons in Medium: Light Sector (u,d) 3.1.1 0± Mesons: p and “s” 3.1.2 1± : r(770) and a1(1260) 3.2 Chiral + Resonance Scheme 3.3 Baryons: D(1232), N 3.4 Comparison to Lattice 3.5 URHICs: E.M. Probes (and Resonances)

  9. Ds→ Dp at Tc Precursor in nuclei ?! pA→(pp)S-WaveA > Sp = + > URHICs:- fluct. Ps(0,q→0) - ppM-spectra - (very) soft photons 3.1.1 Pion and Sigma in Medium Dp=[k02-wk2-Sp(k0,k)]-1 N,Dp N-1,D-1 • rNprevalent, smeared atT>0

  10. 3.1.2 (Axial-) Vector Mesons in Medium r Sp > Sp > (b) Effective Field Theory HLS with rL≡p (“VM”); vacuum: loop exp.O(p/Lc , mr/Lc , g) In-Med.: T-dep. of bare mr(0), gr via matching to OPE, Lmatch<Lc + RG-running to on-shell  dropping r-mass [Harada, Yamawaki, Sasaki etal] [Chanfray etal, Herrmann etal, RR etal, Koch etal, Weise etal, Post etal, Eletsky etal, Oset etal, …] (a) Hadronic Many-Body Theory Dr(M,q:mB,T)=[M2-mr2-Srpp-SrB-SrM ]-1 Propagator: Constraints: -B,M→rN,rp -gN,gA,pN→rN - QCDSRs, lattice B*,a1,K1... N,p,K…

  11. rB/r0 0 0.1 0.7 2.6 Model Comparison [Eletsky etal ’01] [RR+Wambach ’99] (i) r -Mesons at SPS Hot+Dense Matter Hot Meson Gas [RR+Gale ’99] [RR+Wambach ’99] • r-meson “melts” in hot and dense matter • baryon density rB more important than temperature

  12. e+e- Emission Rates: dRee/dM ~ f B ImPem - - [qq→ee] [qq+O(as)] baryon effects important even at rB,net=0: sensitive to rB,tot=rB+rB , f more robust ↔ OZI in-med HG ≈ in-med QGP ! - Quark-Hadron Duality ?! (ii) Vector Mesons at RHIC

  13. > D,N(1900)… Sp a1 Sp + + . . . > Sr N(1520) … > > Exp: - HADES(pA): a1→(p+p-)p - URHICs (A-A) : a1→pg 0  = (iii) Current Status of a1(1260)

  14. pS pS pS pS pS pP pP 3.2 Towards a Chiral + Resonance Scheme Options for resonance implementation: (i) generate dynamically from pion cloud [Kolomeitsev etal ‘03, …] (ii) genuine resonances on quark level → representations of chiral group [DeTar+Kunihiro ‘89, Jido etal ’00, …] e.g. p s N+ N(1535)- r a1D+ N(1520)- N(1900)+ D(1700)-(?) D(1920)+ rS (a1)S rS Importance of baryon spectroscopy to identify relevant decay modes!

  15. NN-1DN-1 Sp D + + + + ... > > > > > pD→N(1440), N(1520), D(1600) > in-medium vertex corrections incl. g’ p-cloud, (“induced interaction”) (1+ f p - f N) thermal p-gas > > 3.3 In-Medium Baryons: D(1232) and N(939)  long history in nuclear physics ! (pA , gA ) e.g. nuclear photoabsorption:MD , GDup by20-40MeV  little attention at finite temperature  D-Propagator at finite rB and T[van Hees+RR ’04]

  16. D(1232) Spectral Fct. at RHIC Nucleon Spectral Fct. at RHIC D in Nuclear g Absorption  broadening: Bose factor, pD→B  repulsion: pDN-1, pNN-1  substantial broadening due to resonant pN → B scattering D in Nuclei and Heavy-Ion Collisions

  17. 1- MEM 0- extracted [Laermann, Karsch ’04] 3.4 Lattice Studies of Medium Effects calculated on lattice

  18. calculate integrate More direct! Proof of principle, not yet meaningful (need unquenched) Comparison of Hadronic Models to LGT

  19. [Turbide,Gale+RR ’03] • consistent with dileptons • pp Brems with soft s at low q? baryon density effects! 3.5 Observables in URHICs e+ e- γ (i) Dileptons(ii) Photons Im Πem(M,q) Im Πem(q0=q)

  20. 4. Heavy-Quark Modes 4.1 Charmed Mesons below Tc 4.2 Heavy-Quark Equilibration 4.3 Charmonium in QGP 4.4 URHICs: Suppression vs. Regeneration

  21. [Grandchamp+RR ’03] 4.1 Charmed Mesons in Hadronic Matter mD(T,rB) expected to decrease (Chiral Symmetry Restoration) [Weise etal ’01]  reduced threshold for p,r + Y → DD  J/y robust  Y’ fragile: Y’→ DD decays

  22. 1-D Fokker Planck Eq. scatt. rate diff. const. e.g.: pQCD Xsections, T=500MeV, as=0.6(0.3)  g=0.25 (0.06) fm-1 ↔ 4-15fm/c(very) slow! Resonance cross section c + q → “D” → c + q ?! 4.2 Heavy-Quark Thermalization in QGP ? • Naively: 1 scatt. Q2≈ T2, (pt,therm)2≈ mcT Nscatt≈(pt,therm/Q)2 ≈5 • more quantitative: Boltzmann Eq. [Svetitsky ’88]

  23. chirally symmetric for light quarks • heavy-quark symmetry •  jm conserved to LO(1/mc) • parameters: mD(0), GD • [van Hees+RR ’04] 4.2.1 Resonant Open-Charm Rescattering _ _ “Light”-Quark Resonances c + q → “D” → c + q • effective model with pseudo/scalar • + axial/vector “D-mesons” 1.4Tc [Asakawa+ Hatsuda ’03]

  24. 4.2.2 Heavy-Quark Thermalization Times in QGP [van Hees+RR ’04] Charm Quarks Bottom vs. Charm pQCD “D” • resonance scatt. isotropic • secondary open-charm ?! • [50% for ] • bottom quarks “barely” • thermalize at RHIC

  25. 4.2.3 Single-e± Spectra at RHIC: D → e+nX Ellitpic Flow + Coalescence D jet- quench [Djordjevic etal ’04] B PHENIX 130AGeV e± does charm equilibrate? _ [Müller etal ’95, Molnar’04] • dynamical origin of resonances? cc production? • onset of pQCD regime:pt>5-6GeV ? open bottom? pt-Spectra: p-p vs Hydro [Batsouli etal. ’02] practically indistinguishable

  26. gluo-dissociation Dissociation Times Cross Sections [Bhanot+Peskin ‘84] “quasifree” diss. [Grandchamp+RR ‘01] [Datta etal ’03] 4.2 Charmonium in QGP • Lattice: hc, J/y survive up to ~2Tc • mass my ≈ const ~ 2mc* • width:

  27. - → ← J/y + g c + c + X for thermalized c-quarks: “jumps” at Tc sensitive to rather direct link to lattice QCD! Equilibration close to Tc ?! 4.3.1 Charmonium Regeneration vs. Suppression [PBM etal ’01, Gorenstein etal ’02, …] • statistical coalescence at Tc: chem.+therm. equil. • charmonia above Tc •  formation in QGP: detailed balance! [Thews etal ’01, Ko etal ’02 … Grandchamp+RR ’02]

  28. J/yExcitation Function • QGP regeneration dominant • sensitive to: • mc* , open-charm degeneracy, • (Ncc)2 ↔ rapidity, √s, A 4.3.2 Charmonium in A-A SPSRHIC [Grandchamp +RR ’03]

  29. 4.3.3 Upsilon in A-A [Lumpkins, Grandchamp, van Hees, Sun +RR ’05] LHC RHIC • bottomonium suppression as unique QGP signature ?! • caveat:  equil. number (very) sensitive to (mb)*, ttherm

  30. 5. Conclusions • Hadronic Many-Body Theory can provide: • - valuable insights into hadron properties in medium • - understanding of observables in nuclear reactions • The physics is often in the width (exception: e.g. “s”) • Interpretations? - many spectral properties appear to vary smoothly - connections to phase transition to be established - need nonperturbative symmetry-conserving approach, e.g. selfconsistent F-derivable thermodyn. potential

  31. Additional Slides

  32. pp Broadening+“s”+BE not enough?! (iii) Resonance Spectroscopy I: p+p- Spectra Sudden BreakupEmission Rate [Broniowski+Florkowski ’03] • r-mass shift ~ -50MeV • small “s” contribution • underestimates r/p [Shuryak+ Brown ’03]

  33. pN smean-field: (iv) Resonance Spectroscopy II : p+p Spectra D(1232) at RHIC D(1232) Spectral Fct. at RHIC [courtesy P. Fachini] Qualitatively in line with data (DMD=6 MeV ,DGD=65 MeV) DMD=+22MeV DGD =+(45±15)MeV

  34. (ii) D(1232) in URHICs  broadening: Bose factor, pD→B  repulsion: pDN-1, pNN-1 not yet included: (pN↔D)

  35. Direct Photons at SPS and RHIC [Turbide etal] • pQCD Cronin ~π0 • T0≈205MeV sufficient • new WA98 points: • pp-Bremsstr. via soft s ? • large “pre-equilibrium” yield • from parton cascade (no LPM) • thermal yields ~ consistent • QGP undersaturation small effect

  36. J/y Width from Lattice QCD

  37. E.M. Emission Rates [RR+Wambach ’99] However: peak in susceptibilities at Tc ↔ ms→ 0 Observables ? e+e-+pg, fluct, pp, J/y,... [Turbide,Gale+RR ’03] 3.1 Continuity?! Light Hadron “Masses” [Shuryak, Zahed, Brown ’04]

  38. generalizes coalescence [Greco,Ko+RR, in progress] 3.3 Light Hadrons in QGP • “Resonance” matter at 1-2Tc?! - EoS can be ok [Shuryak+Zahed’04] • assess formation rates from inelastic reactions • (as in charmonium case): q+q ↔ “p”+X , etc. • solve (coupled) rate equations • accounts for energy conservation, no “sudden” approximation • p-formation more reliable • To be resolved: • quark masses are not “constituent”: • role of gluons? (not really heavier than quarks…) , … -

  39. If c-quarks thermalize: [Grandchamp] * sensitivity tomc Npart 4.3 Charm II: Charmonium Regenerationin QGP / atTc J/y + g c + c + X - → ← • RHIC central: Ncc≈10-20, • QCD lattice: J/y’s to~2Tc [PBM etal, Thews etal]

  40. [Fries,Hwa,Molnar] [STAR] [PHENIX] [Greco et al.] universal partonic v2(pT/n) / n soft-soft≈thermal ( pT » m) soft-hard:explicitthermal+jet (correlations!) 3.4 Hydro vs. Coalescence: The 2-6GeV Regime [Hirano,Nara] v2: mass-dependent But: p/p(4GeV)≈0.3 [PHENIX]: 1±0.15 Challenges:p/p=1+ jet correlation , felliptic flow

More Related