1 / 9

DC Field IR Program

DC Field IR Program. Zhiqiang (Jason) Li 2014 Users Committee Meeting Tallahassee, FL October 10-11, 2014. Current Capabilities. IR transmission: up to 35T ( cell 8 ) IR reflectance: up to 17.5T (SCM3) F requency range: 10 -6,000 cm -1 (far-IR to mid-IR) Faraday geometry

Download Presentation

DC Field IR Program

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DC Field IR Program Zhiqiang (Jason) Li 2014 Users Committee Meeting Tallahassee, FL October 10-11, 2014

  2. Current Capabilities • IR transmission: up to 35T (cell 8) • IR reflectance: up to 17.5T (SCM3) • Frequency range: 10-6,000 cm-1 (far-IR to mid-IR) • Faraday geometry • Temperature range: 4.2-8K in SCM3, 4.2K in cell 8 • Four samples can be loaded in one cool-down in SCM3 (17.5T magnet) for both transmission and reflectance experiments • Typical noise-to-signal ratio: lower than 0.1% for both reflectance and transmission. (mm sized samples) R(w) IR light B sample T(w)

  3. IR Program Users 16 user groups since 2011 • Phaedon Avouris (IBM) • Ken Burch (Boston college) • SasaDordevic (U. Akron) • Tony Heinz (Columbia University) • Erik Henriksen (Washington University in St. Louis). • ZhigangJiang (Georgia Tech) • Zhiqiang Jason Li (NHMFL) • Jan Musfeldt (U. Tennessee) • Willie Padilla (Boston college) • Dmitry Smirnov (NHMFL) • Sergey Suchalkin (SUNY) • Li-Chun Tung (U. ND) • Yuri Vasilyev (Ioffe Institute) • Feng Wang (UC Berkeley) • XiaodongXu(U. Washington) • ChenglinZhang (U. Tennessee)

  4. Research Areas Explored With IR • Graphene • Quantum wells • Topological insulators • Molecular materials • Multiferroics • 2D transition metal dichalcogenides • Iron-based superconductors • Transition metal oxides

  5. IR User Publications since 2012 1 Nature journals • Zhi-Guo Chen, Zhiwen Shi, Wei Yang, Xiaobo Lu, You Lai, Hugen Yan, Feng Wang, Guangyu Zhang and Zhiqiang Li, “Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures”, Nature Communications 5, 4461 (2014).   3 PRLs • T. V. Brinzari, J. T. Haraldsen, P. Chen, Q.-C. Sun, Y. Kim, L.-C. Tung, A. P. Litvinchuk, J. A. Schlueter, D. Smirnov, J. L. Manson, J. Singleton, and J. L. Musfeldt, Electron-Phonon and Magnetoelastic Interactions in Ferromagnetic Co[N(CN)2]2, Phys. Rev. Lett. 111, 047202 (2013) • J. M. Poumirol, W. Yu, X. Chen, C. Berger, W. A. de Heer, M. L. Smith, T. Ohta, W. Pan, M. O. Goerbig, D. Smirnov, and Z. Jiang, Magnetoplasmons in Quasineutral Epitaxial Graphene Nanoribbons, Phys. Rev. Lett. 110, 246803 (2013) • T. V. Brinzari, P. Chen, Q.-C. Sun, J. Liu, L.-C. Tung, Y. Wang, J. A. Schlueter, J. Singleton, J. L. Manson, M.-H. Whangbo, A. P. Litvinchuk, and J. L. Musfeldt, Quantum Critical Transition Amplifies Magnetoelastic Coupling in Mn[N(CN)2]2, Phys. Rev. Lett. 110, 237202 (2013) 1 Nano letters Hugen Yan, Zhiqiang Li, Xuesong Li, Wenjuan Zhu, Phaedon Avouris, and FengnianXia, Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene, Nano Lett. 12, 3766 (2012). 5 other journals • S.V. Dordevic et al, Phys. Status Solidi B 251, 1510 (2014). • Ludwig, J. et al, Phys. Rev. B Rapid Commun., 89 (24), 241406 (2014) • Greshnov, A.A. et al, JETP Lett., 97 (2), 106 (2013) • Hugen Yan et al, New Journal of Physics, 14, 125001 (2012). • T. V. Brinzari et al, Phys. Rev. B 86, 214411 (2012)

  6. Feedback from Users • Acquire a new IR spectrometer for SCM 3 • Build new IR probes for SCM3 and cell 8 • Noise issues: 60Hz noise • Gold coating forabsolute reflectance measurements • Polarizer and analyzer

  7. New Probe and New IR Spectrometer for SCM 3

  8. Future Efforts Resistive magnets • Reflectance measurements in cell 7: up to 31T • Gold coating (in situ) --- Absolute reflectance spectra • New IR transmission probe in cell 8 (35T) SCM3 • Build new reflectance probe • Gold coating (in situ) --- Absolute reflectance spectra • Improve existing IR transmission probe • (Different IR windows, bolometer cool down, etc)

  9. Future Efforts Proposed new dedicated IR superconducting magnet 18/20T • Reflectance, transmission • Gold coating (in situ) --- Absolute reflectance spectra • Polarizer and analyzer • Kerr rotation, Faraday rotation • Anisotropic samples • Lower noise • Isolated vacuum space for detector • Integrate amplifying electronics (JFET) close to the detector • Sample temperature: 4.2K—300K • Broad frequency range; multiple detectors

More Related