1 / 10

XVI edycja Konkursu Matematycznego im. Jana Śniadeckiego

XVI edycja Konkursu Matematycznego im. Jana Śniadeckiego. VI. Izabela Szymla, SP 146. Zadania dla klasy szóstej. 1. Pewna substancja przechodząc ze stanu ciekłego w stan stały ( podlegając procesowi krzepnięcia) zmniejsza swoją objętość o 10%.

gaston
Download Presentation

XVI edycja Konkursu Matematycznego im. Jana Śniadeckiego

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. XVI edycja Konkursu Matematycznego im. Jana Śniadeckiego VI Izabela Szymla, SP 146

  2. Zadania dla klasy szóstej 1.Pewna substancja przechodząc ze stanu ciekłego w stan stały ( podlegając procesowi krzepnięcia) zmniejsza swoją objętość o 10%. O ile procent zwiększy się objętość substancji, gdy przejdzie ona ze stanu stałego w stan ciekły (podlegając procesowi topnienia)?

  3. Rozwiązanie zadania nr 1 dla klasy szóstej - 10% objętości substancji w stanie ciekłym

  4. Rozwiązanie zadania nr 1 dla klasy szóstej 90% objętości początkowej 0,9 ∙X=1, więc X=1:0,9 X=10:9=1,1... Ta liczba wskazuje ,że objętość zwiększyła się o 11,1…%, bo 111,1 …% - 100% = 11,1…%

  5. Zadania dla klasy szóstej 2.Sklejając odpowiednio dwa identyczne prostopadłościany, można otrzymać prostopadłościan o polu powierzchni 448 cm² lub sześcian foremny. Oblicz objętość tego sześcianu, wykonaj rysunki.

  6. Rozwiązanie zadania nr 2 dla klasy szóstej • Zaczniemy rozwiązywać zadanie ,,od końca” • Krawędź ,,sklejonego sześcianu” ,to a • Powierzchnia prostopadłościanu po ,,sklejeniu” to: Cztery kwadraty o boku a Sześć przystających prostokątów o bokach a i połowa a

  7. Rozwiązanie zadania nr 2 dla klasy szóstej krawędź a …lub sześcian…

  8. Rozwiązanie zadania nr 2 dla klasy szóstej …można otrzymać prostopadłościan…

  9. Rozwiązanie zadania nr 2 dla klasy szóstej • Pole całkowite prostopadłościanu to suma pól siedmiu kwadratów o boku a i wynosi 448 cm². Można obliczyć pole jednego kwadratu. 448 : 7 = 64 8∙8 = 64 8 cm to długość boku kwadratu, a także krawędź sześcianu. Objętość sześcianu wynosi 8∙8∙8 = 512[cm²].

  10. BIBLIOGRAFIA • Obiekty clipart, zdjęcia i animacje • Zadania wybrane z XVI edycji Konkursu Matematycznego im. Jana Śniadeckiego

More Related