1 / 38

Atomin rakenteen vaikutus kuvautumisessa

Atomin rakenteen vaikutus kuvautumisessa. Jukka Jauhiainen Oulun Seudun Ammattikorkeakoulu Tekniikan yksikkö. Sisältö. Fysiikan ja radiologian historiaa 1900-luvulla Atomin rakenne ja kuvantamismenetelmät Röntgenfysiikan perusteita Röntgenkuvan muodostuminen.

genero
Download Presentation

Atomin rakenteen vaikutus kuvautumisessa

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Atomin rakenteen vaikutus kuvautumisessa Jukka Jauhiainen Oulun Seudun Ammattikorkeakoulu Tekniikan yksikkö

  2. Sisältö • Fysiikan ja radiologian historiaa 1900-luvulla • Atomin rakenne ja kuvantamismenetelmät • Röntgenfysiikan perusteita • Röntgenkuvan muodostuminen

  3. Milloin mitäkin tapahtui fysiikassa? • Röntgensäteet 1895 (Röntgen) • Radioaktiivisuus 1896 (Becquerel, Curie) • Elektroni 1898 (Thomson) • Energian kvantittuminen 1900 (Planck) • Alfa- ja betasäteet 1902 (Rutherford) • Valosähköinen ilmiö 1905 (Einstein)

  4. Milloin mitäkin tapahtui fysiikassa ? • Atomin kuorimalli 1913 (Rutherford ja Bohr) • Protoni n. 1917 (Rutherford) • Kvanttimekaniikka n. 1927 (Heisenberg ja Schrödinger) • Neutroni 1932 (Chadwick) • Kontrolloitu ydinreaktio 1942 (Fermi) • Atomipommi 1945 (Hahn, Oppenheimer ym.) • Ydinmagneettinen resonanssi 1946 (Bloch ja Purcell) • Kvarkit 1963 (Gell-Mann)

  5. Wilhelm Conrad Röntgen • Röntgensäteiden keksiminen v. 1895 • Fysiikan Nobel 1901 • ”I did’t think, I investigated”

  6. Maailman ensimmäinen röntgenkuva ...

  7. Max Planck (1858 - 1947) • Keksi energian kvantittumisen • ”A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it."

  8. Sir Ernest Rutherford (1871 - 1935) • Keksi radioaktiivisen hajoamislain • Selvitti kokeellisesti atomin rakenteen sirontakokeilla • Löysi alfa- ja beta-partikkelit sekä protonin • Kemian Nobel 1908 • ”All science is either physics or stamp collecting”

  9. Niels Bohr (1885 - 1962) • Atomin kuorimalli • Fysiikan Nobel 1922 (lahjoitti mitalinsa talvisodan aikaan Suomelle) • "An expert is a man who has made all the mistakes which can be made, in a very narrow field."

  10. Albert Einstein (1879 - 1955) • Julkaisi 1905 viisi tieteellistä työtä, mm • Brownin liike • Valosähköinen ilmiö • Suppea suhteellisuusteoria • Nobel 1921 • ”The most incomprehensible thing about the world is that it is comprehensible."

  11. Felix Bloch (1905 - 1983) • Ydinmagneettinen resonanssi kiinteässä olomuodossa • Kiinteän aineen fysiikan ”isä” • Nobel 1952

  12. Edward Purcell (1912 - 1997) • Nobel yhdessä Blochin kanssa 1952 • ” Well, anyway, it's a pretty important thing in the scientific field, and it shows what a fellow can do in his spare time.” -- Boston Heraldin reportteri Nobel-juhlassa

  13. Mitä tapahtui milloinkin radiologiassa ? • Röntgensäteet 1895 (Röntgen) • ”Valotaulu” (”Vitascope”) n. 1900 (Edison) • Subtraktioangiografia 1900 • Mammografia 1913 • Isotooppikuva 1948 (Ansell ja Rotblatt) • Gammakamera 1949 (Copeland ja Benjamin) • PET 1950-luku, SPECT 1960-luku

  14. Mitä tapahtui milloinkin radiologiassa ? • Tietokonetomografia 1972 (Hounsfield) • Magneettikuva fantomista 1973 (Lauterbur, Damadian) • Magneettikuva ihmisestä 1976 (Mansfield ja Maudsley) • Monileike-TT 1990-luku

  15. Atomin rakenne ja kuvantamismenetelmät Ydin: -Protonit -Neutronit Elektroniverho Ydínmagneettinen resonanssi Röntgenabsorptio Radioaktiivisuus Röntgenkuvaus Magneettikuvaus Isotooppilääketiede

  16. Maailmankaikkeuden perusvoimat

  17. Ydin • Protonit • Positiivinen varaus • Protonit määräävät alkuaineen järjestysluvun Z • Neutronit • Neutraaleja • Tietyllä alkuaineella voi olla eri määrä (isotoopit: esim. 1H, 2H, 3H) • Protoneita ja neutroneita kutsutaan nukleoneiksi • Massaluku A=Z+N -> nuklidi

  18. Ydinvoima eli vahva vuorovaikutus • Ydin hyvin tiheä, protonien välillä sähköinen poistovoima • Tarvitaan jokin vuorovaikutus joka pitää ytimen kasassa poistovoimasta huolimatta • Vaikuttaa kaikkien nukleonien välillä yhtä suurena • Lyhyt kantama • Vahva ydinvoima pitää ytimen kasassa • Heikko ydinvoima aiheuttaa mm. beetahajoamisen

  19. Massan ja energian yhteys • E=Dmc2 • Merkittävässä määrin näkyy vain ydinreaktioissa • Ytimen hajottamiseksi erillisiksi nukleoneiksi vaaditaan energiaa ja tämä energia muuttuu yksittäisten nukleonien massaksi. Tätä energiaa kutsutaan ytimen sidosenergiaksi. • Sama energiamäärä vapautuu kun ydin muodostuu nukleoneista.

  20. Radioaktiivisuus • Nuklideja on noin 2500 erilaista, joista suurin osa radioaktiivisia • Ydinteorian mukaan on olemassa lisäksi noin 1500 nuklidia joita ei ole vielä löydetty • Alfahajoaminen: Emoytimestä irtautuu He-ydin • Betahajoaminen: Emoytimestä irtautuu elektroni (tai positroni) ja antineutriino (tai neutriino) • Lyhyt kantama kudoksessa, ei sovellutuksia radiologiaan !

  21. Ytimen energiatilat • Ytimen energiatilat kvantittuneet • Alin energiatila = perustila • Ylemmät energiatilat = viritystilat • Suuret energiaerot tilojen välillä • Viritystilan purkautuessa tuloksena voi olla • Sähkömagneettista säteilyä (g) • Hiukkassäteilyä (a, b, n) • Niihin voi liittyä ytimen muuttuminen toiseksi ytimeksi

  22. Gammasäteily • Ytimen viritys purkautuu gammasäteilyllä • Hyvin lyhyt aallonpituus -> suuri energia • Menee kudoksen läpi juurikaan absorboitumatta • Gammasäteily liittyy aina muihin radioaktiivisiin hajoamisilmiöihin niiden ”sivutuotteena”. • Radiologian sovellus: SPECT

  23. Parinmuodostus ja annihilaatio • Positroni on elektronin vastahiukkanen • Sama massa, mutta positiivinen varaus • Kun positroni ja elektroni kohtaavat, ne häviävät ja muuttuvat kahdeksi 511 keV:n gammafotoniksi. Ilmiötä kutsutaan annihilaatioksi. • Radiologian sovellus: PET • Päinvastaista ilmiötä, jossa yksi gammakvantti muuttuu elektroni-positronipariksi, kutsutaan parinmuodostukseksi.

  24. Elektroniverho • Negatiivinen varaus • Elektronin massa=1/1800-osa protonin massasta • Elektroniverho on ”tyhjää täynnä”: Jos ytimen halkaisija olisi 10 cm, olisi elektronin halkaisija n. 1 cm ja se kiertäisi ydintä n. 2 km:n etäisyydellä • Elektronien energiat ovat kvantittuneet: Vain tietyt ”radat”eli elektronikuoret ovat sallittuja. • Kuoria merkitään kirjaimilla K, L, M, … • Sidosenergia kuvaa sitä, kuinka ”lujassa” elektroni on kuorellaan • Kullakin alkuaineella on sille ominaiset kuorien sidosenergiat

  25. Atomin kuorimalli Ne: (1s22s22p6) K (1s) L1 (2s) L2 (2p)

  26. Atomiorbitaaleja s p f d

  27. Röntgenabsorptio (valosähköinen ilmiö) Ne: (1s12s22p6) K (1s) L1 (2s) L2 (2p)

  28. Röntgenfluoresenssi N M L K

  29. Auger-siirtymä N M L K

  30. Compton-sironta

  31. Röntgenkuvan muodostuminen • Röntgenabsorptio saa aikaan kuvan kontrastin • Eri kudokset absorboivat säteilyä eri lailla • Compton-sironta heikentää kuvanlaatua • Fotonin suunta muuttuu, osuu väärään kohtaan filmiä

  32. Absorptio • Kohteen läpi ilman vuorovaikutuksia läpimennyt säteily valottaa filmin ! • Absorptio riippuu säteilyn energiajakaumasta • Putken jännite, suodatus

  33. Sironta • Mitä suurempi on säteilyn energia, sitä enemmän sironta tapahtuu etusuuntaan, siis filmille. • Voidaan vähentää • Hilat • Ilmarako

  34. H Magneettikuvauksen periaate yhdellä kalvolla Eiköhän tässä ole kaikki oleellinen ;) ...

  35. Radiologian tulevaisuudennäkymiä • 34 % tutkimuksista tehdään nykyään menetelmillä, joita ei ollut olemassakaan muutama kymmenen vuotta sitten. • Tulevaisuudessa kehitys on yhtä dramaattinen • Yhä tarkempia, sensitiivisempiä ja spesifisempiä menetelmiä

  36. Radiologian tulevaisuudennäkymiä • 3D-kuvaus ja kuvankäsittely • Virtuaalisuus • Funktionaalinen ja metabolinen kuvantaminen on jo tätä päivää • Geneettinen ja molekulaarinen kuvaus voisi olla seuraava askel

  37. Radiologian tulevaisuudennäkymiä • Tietotekniikan ja elektroniikan nopea kehitys • Mooren laki: Tietokoneiden laskentateho kaksinkertaistuu 18 kuukauden välein • Hermoverkot • Voidaan ehkä ”kouluttaa” tunnistamaan normaali ja epänormaali anatomia

  38. Ennustaminen on kuitenkin vaikeaa ... • Varsinkin tulevaisuuden ennustaminen. • Kiitos.

More Related