1 / 30

Brief Introduction to Measurement Matrix

Brief Introduction to Measurement Matrix. Presenter : Yumin ( 林祐民 ) Advisor : Prof. An- Yeu Wu Date : 2014/04/08. Outline. Compressive Sensing Construct Sensing Matrix Criteria of RIP Matrices Random Sensing Deterministic Sensing Application of Compressive Sensing Medical Imaging

george
Download Presentation

Brief Introduction to Measurement Matrix

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Brief Introduction to Measurement Matrix Presenter : Yumin (林祐民) Advisor : Prof. An-Yeu Wu Date : 2014/04/08

  2. Outline • Compressive Sensing • Construct Sensing Matrix • Criteria of RIP Matrices • Random Sensing • Deterministic Sensing • Application of Compressive Sensing • Medical Imaging • Compressive Imagine • Midterm Presentation • Information • Paper Survey

  3. Compressive Sensing

  4. Compressive Sensing(1/2) [1][2][3] • Traditional digital data acquisition • Sample data with Nyquist rate • Compress data • Compressive sensing • Main idea: compression within sampling

  5. Compressive Sensing (2/2) • Measure what should be measured

  6. Construct Sensing Matrix- Criteria of RIP Matrices- Random Sensing- Deterministic Sensing

  7. Measurement • Fundamental questions in compressive sensing • How to construction suitable sensing matrices Φ • How to recovery signal • From orthogonal basis sensing to non-linear sensing X =(x0, x1, x2, x3,∙∙∙∙∙∙∙, xn) V0=(1, 0, 0, 1, ∙∙∙∙∙∙, 0) V1=(0, 1, 0, 0,∙∙∙∙∙∙, 0) ⁞ Vm=(0, 0, 1, 0, ∙∙∙∙∙∙, 1) Y = V∙X X =(x0, x1, x2, x3,∙∙∙∙∙∙∙, xn) V0=(1, 0, 0, 0, ∙∙∙∙∙∙, 0) =δ [k] V1=(0, 1, 0, 0,∙∙∙∙∙∙, 0) =δ [k-1] ⁞ Vn=(0, 0, 0, 0, ∙∙∙∙∙∙, 1) =δ [k-n] Y = V∙X y0 = x0+x3 y1 = x1 +x8 ⁞ ym = x2+xn CS y0=x0 y1=x1 ⁞ yn = xn Non-deterministic Polynomial-time problem Full rank

  8. How Can It Work • Projection Φ not full rank • M<N • Loses information in general • Interested in K-sparse signal • Design Φ so that each of it’s MxKsubmetrices are full rank • Pseidoinverse to recover the nonzero coefficient of x yMx1 xNx1 yMx1 xNx1 yMx1 xNx1 ΦMxN ΦMxN K columns K-sparse

  9. Restricted Isometry Property • Signal Sparsity • S-parse • Restricted Isometry Property • Nearly orthonormal when operation on sparse vector • Random constructions exist δ with high probability x α JPEG2000 < 0.1

  10. Criteria of Good Matrices • Good matrices satisfied • Columns vector of Φ is small linear dependent • Columns vector of Φ is low coherence, which means like randomness • Random matrices satisfied RIP with high probability • Nearly orthonormal when operation on sparse vector • Random matrix: Gaussian random matrix • Partial random matrices: random Fourier matrix δ ≤ , , spark()>2K → [2007’ Donoho D]

  11. Gaussian Random Matrix • Fill out the entries of Φ with i.i.d. samples form Gaussian distribution • Project on to a “random subspace” M: measurement S: non-zero number N: signal dimension M=O(Slog(N/S)) << N

  12. Random Fourier Matrix • Partial Random Measurement Matrixes • Generate NxN matrix Φ0and choose M rows to construct MxN measurement matrix Φ NxN matrix Φ0 : Random set : MxN matrix Φ0 : M=O(Slogp(N/S)) << N

  13. From Random to Deterministic Random Sensing • Non-mainstream of signal processing: Worst Case • Less efficient recovery time • Larger storage • Less measurements for K-sparse signals • Mainstream of signal processing: Average Case • More efficient recovery time • Efficient/compact storage • More measurements for K-sparse signals [4] DeterministicSensing

  14. Issuesfor Simplifying Measurement Matrices • From complex to sparse to: • Structurally-simplified • Numerically-simplified • Steady recovery performance Simplifying Existing Sampling Matrices Becomes Prominent

  15. Deterministic Simplification(1/2) • Structurally-simplified • Numerically-simplified • Devore’s binary (0/1) • BCH-bipolar (±1) • Combinatorial-ternary (±1/0) Generation Complexity = O(kn) Sampling Complexity = O(kn) Generation Complexity = O(n) Sampling Complexity = O(n*logn) 5 5 4 4 3 3 2 2 1 1 … … … …

  16. Deterministic Simplification(2/2) • Structural Simplification • Numerically-simplified Empirical Probability of Success Successful Recovery Rate (SNRrec≥100dB) • Steady Recovery Performance !! Number of Non-Zero Entries Signal Length n

  17. Application of Compressive Sensing- Medical Imaging- Compressive Imagine

  18. Applications of Compressive Sensing • Compressive sensing leads to data acquisition revolution Compressive MIMO Radar • Object Recognition Electronic Gate Random Modulator • Analog-to-Information Conversion Modulated Wideband Converter Ultrasound • Medical Imaging Electrocardiography Single-pixel Camera • Compressive Imaging Lensless Camera High Speed Periodic Video ⁞

  19. Portable ECG [12] • Reduce data rate in bio-signal acquisition system • Sampling rate 256Hz, resolution 12bit • Bandwidth = 256*12 = 3072bit/s = 3Mb/s • CS can provide up to 16X compression rate • Ultra-low-power performance • Bio-signal acquisition devices are usually portable

  20. Compare Two Approaches • Adaptive sampling • Sampling rate is variable • Additional computationcircuit • Compressive sensing • Lower effective sampling rate • Threshold circuit to make signal sparse

  21. Ultrasound System Imagine • Portable ultrasound device • Low power • Less memory • High image quality Use less transmitters for beamforming Trade off !! Use more transmitters for beamforming • How to use less transmitters to obtain high performance ultrasound image?

  22. Reconstruction of Ultrasound Imaging [15] • Spatial Sampling • Frequency sampling

  23. Single-Pixel CS Camera [16] • Rice University, 2008 random pattern on DMD array Single photon detector Image reconstruction 1 2 3 4 5 6 7 8 9 1 2 3 1 1 1 A/D conversion x y = 1 1 1 1 1 1

  24. Single-Pixel CS Camera [16] • Image reconstruction

  25. Midterm Presentation- Information- 查資料的方法

  26. Information • Date: 4/29 (Tue.) 6:30~8:30 • Location: EE2-225 • 兩人一組,每組報告12分鐘,提問3分鐘 Mentor: 林祐民(Yumin,yumin@access.ee.ntu.edu.tw)黃乃珊(NHuang,nhuang@access.ee.ntu.edu.tw) 劉嘉琛(Jiachen,tyrliu@access.ee.ntu.edu.tw) 陳奕(Chris,chris@access.ee.ntu.edu.tw)

  27. 附錄四:查資料的方法 (1) Google 學術搜尋 (不可以不知道) http://scholar.google.com.tw/ (太重要了,不可以不知道) 只要任何的書籍或論文,在網路上有電子版,都可以用這個功能查得到 再按「搜尋」,就可找到想要的資料 輸入關鍵字,或期刊名,或作者

  28. (2) 尋找 IEEE 的論文 http://ieeexplore.ieee.org/Xplore/guesthome.jsp 註:除非你是 IEEE Member,否則必需要在學校上網,才可以下載到 IEEE 論文的電子檔 (3) Google (4) Wikipedia (5) 數學的百科網站 http://eqworld.ipmnet.ru/index.htm 有多個 tables,以及對數學定理的介紹 (6) 傳統方法:去圖書館找資料 台大圖書館首頁 http://www.lib.ntu.edu.tw/ 或者去 http://www.lib.ntu.edu.tw/tulips

  29. (7) 查詢其他圖書館有沒有我要找的期刊 台大圖書館首頁 其他聯合目錄 全國期刊聯合目錄資料庫 如果發現其他圖書館有想要找的期刊,可以申請「館際合作」,請台大圖書館幫忙獲取所需要的論文的影印版 台大圖書館首頁 館際合作 (8) 查詢其他圖書館有沒有我要找的書 「台大圖書館首頁」 「其他圖書館」 (9) 找尋電子書 「台大圖書館首頁」 「電子書」 或「免費電子書」

  30. (10) 中文電子學位論文服務 http://www.cetd.com.tw/ec/index.aspx 可以查到多個碩博士論文 (尤其是 2006年以後的碩博士論文) 的電子版 (11) 想要對一個東西作入門但較深入的了解: 看書會比看 journal papers 或 Wikipedia 適宜 如果實在沒有適合的書籍,可以看 “review”, “survey”, 或 “tutorial” 性質的論文 (12) 有了相當基礎之後,再閱讀 journal papers (以 Paper Title, Abstract, 以及其他 Papers 對這篇文章的描述, 來判斷這篇 journal papers 應該詳讀或大略了解即可)

More Related