1 / 47

Masatoshi Koshiba

The Nobel Prize in Physics 2002. "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos". Masatoshi Koshiba. Raymond Davis Jr. NEUTRINO ASTROPHYSICS WITH UNDEGROUND DETECTORS. S. P. Mikheyev INR RAS Moscow. The Sun. e +. e +.  e.  e. p.

Download Presentation

Masatoshi Koshiba

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos" Masatoshi Koshiba Raymond Davis Jr.

  2. NEUTRINO ASTROPHYSICS WITH UNDEGROUND DETECTORS S. P. Mikheyev INR RAS Moscow

  3. The Sun e+ e+ e e p p n n 4He p p Erice 7 July 2004

  4. The Sun 1 2 Lsun  =   71010 sec-1cm-2 26.73 MeV 4R2 4p  4He+ 2e+ + 2e + 26.73 MeV 1964 - Original Motivation “… to see into the interior of star and thus verify directly the hypothesis of nuclear energy generation in star.” Erice 7 July 2004

  5. Solar Neutrinos pp – chain p + p Ю2H + e+ +ne 99.6% Ј 0.420 MeV p + e- + p Ю2H +ne 0.4% 1.442 MeV 2H + p Ю3He + g 85% 0.002% 15% 3He + 3He Ю4He+ 2p 3He + 4He Ю7Be + g 3He + p Ю4He + e+ +ne 0.13% 99.87% Ј 18.77 MeV 7Be + p Ю8B+ g 7Be + e-Ю7 Li+ne • 0.861 MeV, • 0.383 MeV 8B Ю8Be* + e+ +ne Ј 15.0 MeV 7Li+ p Ю2a 8Be*Ю2a Erice 7 July 2004

  6. Solar Neutrinos CNO – chain 13N Ю13C + e+ +ne Ј 1.199 MeV 12C + p Ю13N + g 13C + p Ю14N + g 15N + p Ю12C + a 99.9% 15O Ю15N + e+ +ne Ј 1.732 MeV 14N + p Ю15O + g 0.1% 17O + p Ю14N + a 15N + p Ю16O + g 17F Ю17O + e+ +ne Ј 1.740 MeV 16O + p Ю17F + g Erice 7 July 2004

  7. Solar Neutrinos Bahcall & Pinsonneault PRL (2004) Standard Solar Model (SSM) Neutrino Flux (cm-2сs-1MeV-1) Neutrino Energy (MeV) Erice 7 July 2004

  8. Solar Neutrinos: Detection e- n e- W+ n p n n n n n n n n n p p p p p p p p p p p e Charge Current Reaction n + ZA  e- + Z+1A ne 2H 37Cl 71Ga 7Li115In Z+1A ZA Erice 7 July 2004

  9. e- n n n e- Z0 W+ e- e- e- n  Solar Neutrinos: Detection Neutrino Electron Scattering n + e-  n + e- ne,, ne NC  CC/6 Erice 7 July 2004

  10. n n Z0 n n n n n p p p p p N N*     Solar Neutrinos: Detection Neutral Current Reaction n + N  n + N* ne,, ZA ZA* ZA Erice 7 July 2004

  11. Solar Neutrinos: Detection n + 37Cl  e- + 37Ar (B. Pontecorvo 1946) Threshold 0.814 МэВ 7Be Neutrino Flux (cm-2сs-1MeV-1) 8B Neutrino Energy (MeV) Erice 7 July 2004

  12. Solar Neutrinos: Detection Davis’s experiment C2Cl4 Erice 7 July 2004

  13. Rexp =0.335 0.029 RSSM Solar Neutrinos: Detection n + 37Cl  e- + 37Ar Rexp = 2.56 0.23 SNU Threshold 0.814 МэВ Neutrino Flux (cm-2сs-1MeV-1) Neutrino Energy (MeV) Erice 7 July 2004

  14. RSSM = 7.6– 1.1 RSSM = 7.6+ 1.3SNU Solar Neutrinos: Detection n + 71Ga  e- + 71Ge Threshold 0.233 МэВ Neutrino Flux (cm-2сs-1MeV-1) Neutrino Energy (MeV) Erice 7 July 2004

  15. Solar Neutrinos: Detection GALLEX/GNO experiment (Gran Sasso) SAGE experiment (Baksan) Erice 7 July 2004

  16. Rexp =0.584 0.039 RSSM RSSM = 7.6– 1.1 RSSM = 7.6+ 1.3SNU RSSM = 128 + 9SNU RSSM = 128 – 7 Solar Neutrinos: Detection n + 71Ga  e- + 71Ge Threshold 0.233 МэВ Neutrino Flux (cm-2сs-1MeV-1) Neutrino Energy (MeV) Erice 7 July 2004

  17. e q n Solar Neutrinos: Detection ne + e-  ne + e- Erice 7 July 2004

  18. 41.4m 40m Solar Neutrinos: Detection Kamiokande/Super-Kamiokande Erice 7 July 2004

  19. Solar Neutrinos: Detection ne + e-  ne + e- 22385 solar n events (14.5 events/day) Erice 7 July 2004

  20. Solar Neutrinos: Detection ne + e-  ne + e- The Sun by Neutrinograph Erice 7 July 2004

  21. Data +0.016 0.005 = 0.465 -0.015 SSM Solar Neutrinos: Detection ne + e-  ne + e- Erice 7 July 2004

  22. Solar Model vs. Experiments Erice 7 July 2004

  23. 1000 tones D2O 12 m Diameter Acrylic Vessel Support Structure for 9500 PMTs, 60% coverage 1700 tonnes Inner Shielding H2O 5300 tonnes Outer Shield H2O Solar Neutrinos: Detection Sudbury Neutrino Observatory Erice 7 July 2004

  24. Direction -0.07 -0.08 FCC = 1.59+0.08(stat)+0.06(syst) ne + d  p + p + e- nx + e- nx+ e- nx + d  nx+ p + n NC ES CC -0.26 FEC = 2.21+0.31(stat)  0.10(syst) Kinetic Energy Position Solar Neutrinos: Detection Detector SNO FNC = 5.21  0.27(stat)  0.38(syst) Erice 7 July 2004

  25. Solar Neutrinos: Detection Detector SNO Erice 7 July 2004

  26. Solar Model vs. Experiments 1. Energy production in Sun: pp chain is the dominant mechanism LCNO < 7.6% (3) Bahcall, Gonzalez-Garcia, Pena-Garay, PRL2003 2. Neutrino fluxes in pp cycle : Ffit fi = FBP04 fpp = 1.02  0.02 (1) fB = 0.88  0.04 (1) fBe = 0.91  0.25/0.62 (1) Bahcall, Pena-Garay, JHEP2003 Bahcall, PG, JHEP2003 Erice 7 July 2004

  27. Supernova Neutrinos p + e- n + e  n + e+ p + e N + N  N + N + x + x e- + e+ x + x     e + e x + x x x x Cooling through neutrino emission: e,e,,,,. 99% of the SN energyemitted in neutrinos during 10 s    Neutronization burst: e emitted during 10 ms Erice 7 July 2004

  28. Supernova Neutrinos  E 12 MeV ~ n e  E 10 MeV n e  - E ( 20 25 ) MeV ~ ~ n n n n , , , m m t t Neutrino energies Erice 7 July 2004

  29. Supernova Neutrinos  e + p  e+ + n • Neutrino burst • Relic SN neutrinos Erice 7 July 2004

  30. Supernova Neutrinos T Neutrino burst search Erice 7 July 2004

  31. Supernova 1987A Erice 7 July 2004

  32. Supernova 1987A 23 February 7:36 UT Erice 7 July 2004

  33. Supernova 1987A • Confirmed the neutrino mechanism of Supernova cooling • Obtained constrains on some Supernova parameters • Obtained constrains on some neutrino properties (masses, charge, etc) Erice 7 July 2004

  34. Supernova 1987A 23 February  1 day LSD DATA 100 Number of bursts 10 23 February at 2:52 UT 1 LSD Detected 5 Events in 7 second 5 15 10 10 100 Time window (sec) Erice 7 July 2004

  35. Courtesy to O. Ryazhskaya February 23, 1987 Chronology 1 3 5 7 9 11 mv=12m mv=6m Geograv 2:52:35,4 2:52:36,8 7:36:00 LSD 5 2 43,8 19 2:52:34 KII 2 7:35:35 12 (4) 44 47 7:35:41 IMB 8 47 7:36:06 BUST 2:52:34 1 6 21 Erice 7 July 2004

  36. The Two-Staged gravitational collapse Model[Imshennik V.S., Space Sci Rev, 74, 325-334 (1995)] aside ahead Courtesy to O. Ryazhskaya Erice 7 July 2004

  37. Courtesy to O. Ryazhskaya The difference of neutrino yield between standard model and model of rotating collapsar. Tc~5x1012K Tc~5x1010K The main reaction – URCA-process: Erice 7 July 2004

  38. V.S.Imshennik, O.G.Ryazhskaya astro-ph/0401613 Erice 7 July 2004

  39. Fe (2 sm) 6 m 4.5 m 8m Fe (10 sm) Courtesy to O. Ryazhskaya Liquid Scintillator Detector (LSD) H=5200 m.w.e. 72 counters 90 tons ofСnH2n (n~9), 200 tons ofFe General view of LSD Erice 7 July 2004

  40. e e e СnH2n СnH2n СnH2n Courtesy to O. Ryazhskaya Erice 7 July 2004

  41. Courtesy to O. Ryazhskaya & V. Boyarkin Events 106 105 104 103 102 10 1 Energy range, registered by LSD Energy spectrum of the particles, coming from iron plate of thickness 2,8 sm(Geant4 calculations; histogram – total energy deposit) 0 5 10 15 20 25 30 35 40 Энергия, МэВ Erice 7 July 2004

  42. Next Supernova More detectors sensitive to SN neutrino are planned or being built. • Baksan • MiniBooNE detector • LVD • AMANDA • KamLand • SNO • Super-Kamiokande Many experiments stand ready to observe the neutrinos of the next galactic supernova. • Borexino • ICARUS • IceCube • HyperKamiokande • UNO • and many others Erice 7 July 2004

  43. Relic Supernova neutrinos There exist the flux of relic supernova neutrinos. In universe there is one supernova explosion per second Erice 7 July 2004

  44. Relic Supernova neutrinos Super-Kamiokande published the world’s best limits on relic supernova neutrino [M.Malek et al., Phys. Rev. Lett.90 061101 (2003)]. 1.3 cm-2s-1 Erice 7 July 2004

  45. Relic Supernova neutrinos GADZOOKS adolinium ntineutrino etector ealously utperforming ld amiokande, uper ! Erice 7 July 2004

  46. Relic Supernova neutrinos Erice 7 July 2004

  47. Relic Supernova neutrinos Detection of relic supernova neutrinos will: • verify the basic picture of star formation and death; • constrain star formation history No detection of relic supernova neutrinos also is very interesting. Erice 7 July 2004

More Related