1 / 6

Cursul – 11 Elemente de geometrie diferentiala a curbelor in spatiu

Cursul – 11 Elemente de geometrie diferentiala a curbelor in spatiu. Fie E 3 = ( E 3 , V 3 , ~ ) si R = ( O; i,j,k )- un reper ortonormat Definitia 1 . Numim arc regulat de curba in spatiu aplicatia bijectiva, continua si diferentiabila

gerry
Download Presentation

Cursul – 11 Elemente de geometrie diferentiala a curbelor in spatiu

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cursul – 11Elemente de geometrie diferentiala a curbelor in spatiu Fie E3 = ( E3 ,V3 ,~) si R = ( O;i,j,k)- un reper ortonormat Definitia 1. Numim arc regulat de curba in spatiu aplicatia bijectiva, continua si diferentiabila - puncte regulate (*), puncte singulare, curba in sens larg - reprezentari: Daca x,y,zCp(I) -  de clasa Cp(I) Definitia 2. Curbele (1) si (2) au in punctul comun Mo un contact de ordinul q p daca au q+1 puncte comune. q = 0 – curbe secante, q = 1 – curbe tangente, q = 2 – curbe osculatoare,.. supraosculatoare

  2. Teorema 1.Curbele (1) si (2) au in punctul Mo un contact de ordinul q daca si numai daca Teorema 2.Curbele (1)F(x,y) = 0 si ( 2) x = x(t), y=y(t) au in punctul Mo un cntact de ordinul q daca (t0) = ’(t0) =….= (q)(t0) = 0,  (q+1)( t0) = 0,unde (t0)= F(x(t) ,y(t) ). Aplicatii: 1o Tangenta la o curba: sau 2oCercul osculator: Fie ()x = x(t), y=y(t) si cercul

  3. Familii de curbe plane :(C) F(x,y,) = 0 Infasuratoarea unei familii de curbe plane; definitie Puncte singulare: Teorema 3.Multimea punctelor infasuratoarei familiei de curbe plane C satisfac sistemul: Aplicatie: evoluta unei curbe plane, evolventa Proprietati metrice Fie (  )

  4. Versorul tangent , respectiv dreapta tangenta intr-un punct regulat al curbei (  )Planul prin punct cu normala data de  se numesteplanul normal

  5. Curbura si torsiune Functia Teorema 3.Curba () este o dreapta daca si numai daca K(s) = 0. Teorema 4. Curba () este plana daca si numai daca T(s) = 0

  6. Formule de calcul pentru K si T

More Related