1 / 50

Statistiek 2

Statistiek 2. Hoofdstuk 7: Variantieanalyse hoofdstuk 7. type AV?. aantal OV?. type OV?. hoeveel populaties?. categorieën afhankelijk?. parametrisch. non-parametrisch. chi-square goodness of fit. one sample t-test / z-test. 1. niet in dit boek. independent t-test / z-test.

gezana
Download Presentation

Statistiek 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Statistiek 2 Hoofdstuk 7: Variantieanalyse hoofdstuk 7

  2. type AV? aantal OV? type OV? hoeveel populaties? categorieën afhankelijk? parametrisch non-parametrisch chi-square goodness of fit one sample t-test / z-test 1 niet in dit boek independent t-test / z-test Rank-sum onafh. nominaal 2 afh. dependentt-test Signed-ranks 1 onafh. oneway ANOVA Kruskal-Wallis > 2 afh. repeatedmeasures ANOVA Friedman’s ANOVA interval/ ordinaal Pearsoncorrelation Spearmancorrelation interval/ ordinaal onafh. n-way ANOVA nominaal afh. repeatedmeasures ANOVA gemengd mixed design ANOVA interval > 1 multiple regression gemengd multiple regression chi-square goodness of fit 1 onafh. nominaal/ ordinaal nominaal 1 ≥ 2 onafh. Pearsonchi-square Hoofdstuk 7: Variantieanalyse

  3. Vandaag Variantieanalyse: oneway ANOVA & Kruskal-Wallis

  4. Variantieanalyse Tot nu toe bij hypothesetoetsing: t-toets en z-toets voor verschil tussen 2 gemiddelden - hebben mensen die therapie A gevolgd hebben minder angst dan mensen die therapie B gevolgd hebben? - besteden jongens en meisjes evenveel tijd aan huiswerk? -> telkens 1 OV (vb. therapie, geslacht) met telkens 2 waarden -> telkens 1 AV (vb. angst, tijd) Hoofdstuk 7: Variantieanalyse

  5. Variantieanalyse Ook mogelijk: toetsen voor verschillen tussen meer dan 2 gemiddelden - is er een verschil in het welbevinden van kinderen met ouders die autoritair, autoritatief of permissief opvoeden? -> telkens 1 OV (vb. opvoedingsstijl) met telkens meer dan 2 waarden (vb. 3) -> telkens 1 AV (vb. welbevinden) eenwegs (‘one way’) variantie-analyse (‘ANOVA’) Bij twee OV: tweewegs (‘two way’) variantie analyse (zie volgende les) Bij meer dan één AV: MANOVA (niet in Statistiek II) Hoofdstuk 7: Variantieanalyse

  6. Variantieanalyse 1. Toetsingssituatie Is er een verschil in gemiddelde tussen groep a, b, c, … op variabele Y? of Is er een effect van variabele X (met niveau’s a, b, c,..) op variabele Y? en: Indien er een effect is, tussen welke groepen is er een verschil? (= post hoc toetsing) Hoofdstuk 7: Variantieanalyse

  7. Variantieanalyse 2. Voorwaarden • AV is gemeten op intervalniveau • OV wordt als nominaal beschouwd (ook al is OV soms ordinaal) • scores van AV zijn in elke populatie normaal verdeeld of aantal deelnemers is in elke populatie groter dan 30 • varianties in populaties zijn gelijk (homogeniteit) • onafhankelijke steekproeven Assumptie van normaliteit en homogeniteit minder strikt bij gelijke steekproeven Hoofdstuk 7: Variantieanalyse

  8. Variantieanalyse 3. Hypothesen H0: alle populatiegemiddelden zijn aan elkaar gelijk: µa = µb = µc = … = µj als er J populaties zijn H1: minstens twee populatiegemiddelden zijn niet gelijk aan elkaar µj ≠ µj’ voor minstens één paar van j en j’ Dus H1 is NIET µa ≠ µb ≠ µc ≠… ≠ µj H0 wordt getoetst door gebruik te maken van varianties: De tussen-groeps-variantie of between-groups variance mean square between (MSb) De binnen-groeps-variantie of within-groups variance mean square within (MSw) Hoofdstuk 7: Variantieanalyse

  9. Variantieanalyse Within groups Hoofdstuk 7: Variantieanalyse

  10. Variantieanalyse Between groups Within groups Hoofdstuk 7: Variantieanalyse

  11. Variantieanalyse Wanneer de verschillen tussen groepsgemiddelden groter worden en de verschillen binnen elke groep ongeveer hetzelfde blijven wordt de between-groupsvariantie groter ten opzichte van de within-groupsvarianties. Dus: de verhouding between-groupsvariantie/within-groupsvariantie zegt iets over het verschil tussen groepsgemiddelden. Between groups Within groups Hoofdstuk 7: Variantieanalyse

  12. Variantieanalyse MSw = verschillen te wijten aan verschillen tussen personen binnen dezelfde groep = inter-individuele verschillen die niet te wijten zijn aan het effect van de OV = foutenvariantie (varfout) MSb = variantie van groepsgemiddelden + variantie van scores rondom groepsgemiddelden = variantie van de effecten van OV (vareffect) + foutenvariantie (varfout) MSw = varfout MSb = vareffect + varfout Hoofdstuk 7: Variantieanalyse

  13. Variantieanalyse MSb= vareffect + varfout MSw = varfout -> ALS H0 waar is, dwz. vareffect zeer klein is of gelijk is aan 0 DAN: MSb = MSw of MSb / MSw = 1 -> ALS H0 niet waar is, dwz. vareffect verschilt van 0 DAN: MSb > MSw of MSb / MSw > 1 Hoofdstuk 7: Variantieanalyse

  14. Variantieanalyse 4. Toetsingsgrootheid Df b = J – 1 (J =aantal groepen) Df w = N – J (N = totaal aantal waarnemingen; J = aantal groepen) Kansverdeling: F-verdeling (zie bijlage) Vb. Met df b = 3 – 1 = 2 en df w = 27 – 3 = 24 Hoofdstuk 7: Variantieanalyse

  15. Variantieanalyse 5. Beslissingsregels a. Overschrijdingskansen (niet in tabel) Is P r (F) ≤ α ? ja, verwerp H0 neen, verwerp H0 niet Vb. P r (F = 7.13) = 0.0037 voordf b = 2 , df w= 24 P r (= 0.0037) < 0.05 dus H0 verwerpen Hoofdstuk 7: Variantieanalyse

  16. Variantieanalyse b. kritiekewaarden Is F ≥ kritieke F waardebij df teller = df b = J – 1 ja, verwerp H0 dfnoemer = df w = N - J neen, verwerp H0 niet kritieke F waardedf b = 2 , df w= 24 bij alpha = 0.05 = 3.4 (zietabel) F (7.13) > Fkritiek (3.4) dus H0 verwerpen Hoofdstuk 7: Variantieanalyse

  17. Variantieanalyse Hoofdstuk 7: Variantieanalyse

  18. Variantieanalyse Wanneer H0 verworpen is weten we dat minstens 2 groepen verschillen mbt. hun gemiddelde -> welke groepen? = post-hoc toetsing We zouden via t-toetsen elk paar van groepen met elkaar kunnen vergelijken (vb. groep 1-2, 2-3, 1-3). Bij elke t-toets gebruiken we een α = 0.05. Probleem: door herhaaldelijk t-toetsen uit te voeren neemt de fout van de 1e soort toe. Oplossing: bij posthoc toetsing corrigeren voor deze hogere kans op fouten van de 1e soort. >> Bonferroni correctie: wanneer we drie groepen vergelijken, alleen besluiten dat er een significant verschil is als P ≤ 0.05/3 (ipv. 0.05) (andere mogelijke correcties: Tukey, Scheffé,...) Hoofdstuk 7: Variantieanalyse

  19. Variantieanalyse Post-hoc toetsing in SPSS: SPSS output houdt al rekening met deze correctie; dus de P waarden zijn al gecorrigeerd. Als P ≤ 0.05 dan is er een significant verschil tussen beide groepen vb. enkel significant verschil ts. Groep 1-3 Hoofdstuk 7: Variantieanalyse

  20. Variantieanalyse Voorbeeld ANOVA in SPSS: stressreductie door chocolade bij dansers Hoofdstuk 7: Variantieanalyse

  21. Variantieanalyse 6. Effectgrootte 7. Rapportering Er was een significant effect van chocolade op het stressniveau van de dansers, F(2, 99) = 3.14, p = .048, r = .24 . De dansers die geen chocolade aten rapporteerden een hoger stressniveau (M = 65.5, SD = 10.54) dan dansers die twee repen chocolade aten (M = 59.12, SD = 12.27). Het stressniveau van de dansers die één reep chocolade aten (M = 61.32, SD = 8.95) verschilde niet significant van de andere condities. Hoofdstuk 7: Variantieanalyse

  22. type AV? aantal OV? type OV? hoeveel populaties? categorieën afhankelijk? parametrisch non-parametrisch chi-square goodness of fit one sample t-test / z-test 1 niet in dit boek independent t-test / z-test Rank-sum onafh. nominaal 2 afh. dependentt-test Signed-ranks 1 onafh. oneway ANOVA Kruskal-Wallis > 2 afh. repeatedmeasures ANOVA Friedman’s ANOVA interval/ ordinaal Pearsoncorrelation Spearmancorrelation interval/ ordinaal onafh. n-way ANOVA nominaal afh. repeatedmeasures ANOVA gemengd mixed design ANOVA interval > 1 multiple regression gemengd multiple regression chi-square goodness of fit 1 onafh. nominaal/ ordinaal nominaal 1 ≥ 2 onafh. Pearsonchi-square

  23. Variantieanalyse: twoway ANOVA

  24. tweewegs-variantieanalyse Eénwegs-variantie analyse -> 1 OV met meer dan twee waarden -> 1 AV is er een verschil in het welbevinden van kinderen met ouders die autoritair, autoritatief, of permissief opvoeden? Tweewegs-variantie analyse (of: tweefactor-variantie analyse) -> 2 OV -> 1 AV wat is het effect van drie verschillende lesmethoden en het geslacht van de leerling op de studieresultaten van leerlingen? = 3 X 2 ANOVA = k x r factorieel design met k = aantal niveaus OV1, r = aantal niveaus OV2 Hoofdstuk 7: Variantieanalyse

  25. tweewegs-variantieanalyse Twee vragen: 1. vraag over hoofdeffect van elke OV op AV 2. vraag over interactie-effect tussen OV1 en OV2 op AV hoe hebben de twee OV’s samen in combinatie een effect op AV? is het effect van de ene OV op AV anders naargelang het niveau van de andere OV? - is het effect van ses op toekomstbeeld anders voor jongens dan voor meisjes? - is het effect van chocolade op stressreductie anders voor beginners dan voor gevorderden? Hoofdstuk 7: Variantieanalyse

  26. tweewegs-variantieanalyse 1. Toetsingssituatie a. Is er een effect van variabele A (met niveaus a1, a2, …) op variabele Y? b. Is er een effect van variabele B (met niveaus b1, b2, …) op variabele Y? = 2 hoofdeffecten c. Is het effect van variabele A anders naargelang het niveau van variabele B (of omgekeerd)? Wat is het effect van de combinatie van A en B op Y? = interactie-effect tussen A en B d. Indien er een hoofdeffect is van A, tussen welke groepen van A is er een verschil? e. Indien er een hoofdeffect is van B, tussen welke groepen van B is er een verschil? = post hoc toetsing Hoofdstuk 7: Variantieanalyse

  27. tweewegs-variantieanalyse 2. Voorwaarden • AV is gemeten op intervalniveau • OV’s worden als nominaal beschouwd (ook al is OV soms ordinaal) • scores van AV zijn in alle populaties normaal verdeeld • varianties in populaties zijn gelijk (F-toets of Levene’s toets) • onafhankelijke steekproeven Hoofdstuk 7: Variantieanalyse

  28. tweewegs-variantieanalyse 3. Hypothesen Wat is het effect van ses en geslacht op de toekomstverwachting van jongeren? OV1 (A) = ses (laag, midden, hoog) OV2 (B) = geslacht (jongens, meisje) AV = toekomstbeeld score ts. -10 en +10 -> 3 x 2 design (dus 6 populaties - zie les 2: waarden van OV bepalen aantal populaties) a. Is er een hoofdeffect van variabele A (met i niveaus)? H0: alle populatiegemiddelden van A zijn aan elkaar gelijk µ1 = µ2 = µ3 = … = µi als er I groepen zijn van A H1: minstens twee populatiegemiddelden zijn niet gelijk aan elkaar µi ≠ µi’ voor minstens één paar van i en i’ Of in termen van varianties H0: σ²A = σ²W of σ²A / σ²W = 1 H1: σ²A > σ²W of σ²A / σ²W > 1 Hoofdstuk 7: Variantieanalyse

  29. tweewegs-variantieanalyse b. Is er een hoofdeffect van variabele B (met j niveaus)? H0: alle populatiegemiddelden van B zijn aan elkaar gelijk µ1 = µ2 = µ3 = … = µj als er J groepen zijn van B H1: minstens twee populatiegemiddelden zijn niet gelijk aan elkaar µj ≠ µj’ voor minstens één paar van j en j’ Of in termen van varianties H0: σ²B = σ²W of σ²B / σ²W = 1 H1: σ²B > σ²W of σ²B / σ²W > 1 Hoofdstuk 7: Variantieanalyse

  30. tweewegs-variantieanalyse c. Is er een interactie-effect van variabele AxB ? H0: alle populatiegemiddelden van combinatie AxB zijn aan elkaar gelijk: µ11 = µ12 = … = µij als er I x J groepen zijn H1: minstens twee populatiegemiddelden zijn niet gelijk aan elkaar µij ≠ µi’j’ voor minstens één paar van ij en i’j’ Of in termen van varianties H0: σ²AxB = σ²W of σ²AXB / σ²W = 1 H1: σ²AXB > σ²W of σ²AXB / σ²W > 1 Hoofdstuk 7: Variantieanalyse

  31. tweewegs-variantieanalyse 4. Toetsingsgrootheid 4.1 F toets voor hoofdeffect van A met dfA = I – 1 (I = aantal niveaus van A) met dfW = N – (I x J) (N = totaal aantal ) vb. FA = 10/2.02 = 4.95 met dfA = 2 dfW = 24 4.2 F toets voor hoofdeffect van B met dfB = J – 1 (J = aantal niveaus van B) met dfW = N – (I x J) (N = totaal aantal ) vb. FB = 0.53/2.02 = 0.26 met dfB = 1 dfW = 24 4.3 F toets voor interactie-effect van AxB met dfAxB = (I - 1). (J – 1) met dfW = N – (I x J) (N = totaal aantal) vb. FAxB = 30.54/2.02 = 15.12 met dfAxB = 2 dfW = 24 Hoofdstuk 7: Variantieanalyse

  32. tweewegs-variantieanalyse 5. Beslissingsregels a. Overschrijdingskansen Is P r (F) ≤ α? ja, verwerp H0 neen, verwerp H0 niet >> overschrijdingskans per mogelijk effect (hoofd / interactie) in ANOVA-tabel SPSS b. Kritieke waarden Ook mogelijk via tabel met F-waarden. Hoofdstuk 7: Variantieanalyse

  33. tweewegs-variantieanalyse significant hoofdeffect ses: jongens en meisjes samengenomen is er een effect van ses geen significant hoofdeffect geslacht: 3 ses niveaus samengenomen is er geen significant verschil tussen j en m een interactie-effect: het verschil ts. j en m is niet hetzelfde voor alle niveaus van ses >> post-hoc toetsing nodig om te weten tussen welke groepen er een verschil is. (SPSS) Hoofdstuk 7: Variantieanalyse

  34. tweewegs-variantieanalyse interactie-effect: het verschil ts. jongens en meisjes is niet hetzelfde voor alle niveaus van ses (lijnen lopen niet parallel) Hoofdstuk 7: Variantieanalyse

  35. tweewegs-variantieanalyse Post hoc analyse bij two-way ANOVA: Zie post-hoc bij one-way ANOVA: niveaus binnen 1 OV vergelijken. (overbodig als er maar 2 niveaus zijn – bv. geslacht. Kijk dan naar gemiddeldentabel) Om alle cellen paarsgewijs te vergelijken: simple effects – enkel met SPSS syntax (zie boek p. 163) Hoofdstuk 7: Variantieanalyse

  36. tweewegs-variantieanalyse Interpretatie resultaten ANOVA: via plots van gemiddelden per groep - 4 alternatieve hypothetischesituaties (hier geïdealiseerd): 1. Eén hoofdeffect en geen interactie-effect - geen hoofdeffect ses: geen verschil ts. laag-midden-hoog groep wanneer j en m samennemen - wel hoofdeffect geslacht: j scoren hoger dan m wanneer 3 ses groepen samennemen - geen interactie-effect: het verschil ts. j en m is hetzelfde voor alle niveaus van ses (lijnen lopen parallel) Hoofdstuk 7: Variantieanalyse

  37. tweewegs-variantieanalyse 2. Twee hoofdeffecten en geen interactie-effect - een hoofdeffect ses - een hoofdeffect geslacht - geen interactie-effect: het verschil ts. j en m is hetzelfde voor alle niveaus van ses (lijnen lopen parallel) Hoofdstuk 7: Variantieanalyse

  38. tweewegs-variantieanalyse 3. Twee hoofdeffecten en een interactie-effect - een hoofdeffect ses: jongens en meisjes samengenomen is er een effect van ses - een hoofdeffect geslacht - een interactie-effect: het verschil ts. j en m is niet hetzelfde voor alle niveaus van ses (lijnen lopen niet parallel) Hoofdstuk 7: Variantieanalyse

  39. tweewegs-variantieanalyse 4. Geen hoofdeffecten maar wel een interactie-effect - geen hoofdeffect ses: jongens en meisjes samengenomen is er geen effect van ses - geen hoofdeffect geslacht: 3 ses niveaus samengenomen is er geen effect van geslacht - een interactie-effect: het verschil ts. j en m is niet hetzelfde voor alle niveaus van ses (lijnen lopen niet parallel) Hoofdstuk 7: Variantieanalyse

  40. tweewegs-variantieanalyse 6. Effectgrootte Partial Eta squared: interpreteerbaar zoalsr teberekenen met SPSS Via ANOVA-dialoogbox > options > estimates of effect size aanvinken Hoofdstuk 7: Variantieanalyse

  41. tweewegs-variantieanalyse Demo two-way ANOVA: effect van chocolade én dansniveau op stress? Hoofdstuk 7: Variantieanalyse

  42. tweewegs-variantieanalyse 7. Rapportering Eerst de potentiëlehoofdeffectenbespreken (zie one-way ANOVA, inclusiefeventuele post-hoc)  gegevens: gemiddelden, SD, F-waarde, p-waarde, r Daarnapotentieelinteractie-effect, zelfdegegevens. Hoofdeffectenzijnnietmeer relevant alsereeninteractie-effect is, maarmoetenwelgerapporteerdworden. Interpretatie van de resultatengaatenkel over interactie-effect. Hoofdstuk 7: Variantieanalyse

  43. type AV? aantal OV? type OV? hoeveel populaties? categorieën afhankelijk? parametrisch non-parametrisch chi-square goodness of fit one sample t-test / z-test 1 niet in dit boek independent t-test / z-test Rank-sum onafh. nominaal 2 afh. dependentt-test Signed-ranks 1 onafh. oneway ANOVA Kruskal-Wallis > 2 afh. repeatedmeasures ANOVA Friedman’s ANOVA interval/ ordinaal Pearsoncorrelation Spearmancorrelation interval/ ordinaal onafh. n-way ANOVA nominaal afh. repeatedmeasures ANOVA gemengd mixed design ANOVA interval > 1 multiple regression gemengd multiple regression chi-square goodness of fit 1 onafh. nominaal/ ordinaal nominaal 1 ≥ 2 onafh. Pearsonchi-square Hoofdstuk 7: Variantieanalyse

  44. Kruskal-Wallis toets voor verschil tussen k populaties 1. Toetsingssituatie Is er een verschil in gemiddelde tussen groep a, b, c, … op variabele Y? >> zelfde situatie als eenwegs-variantieanalyse. 2. Voorwaarden AV is niet normaal verdeeld en/of AV is van ordinaal meetniveau Chocolade als afrodisiacum? Gemeten met: Hoofdstuk 7: Variantieanalyse

  45. Kruskal-Wallis toets voor verschil tussen k populaties 3. Hypothesen H0: θ1 = θ2 = … = θk H1= “niet H0” bij k niveaus van de OV 4. Toetsingsgrootheid Gebaseerd op rangordening zoals bij Mann-Whitney, grootheid = H >> analyze > non-parametric > legacy dialogs > k independent samples (zie boek 7.3.4) Hoofdstuk 7: Variantieanalyse

  46. Kruskal-Wallis toets voor verschil tussen k populaties 5. Beslissingsregel Is de gerapporteerde overschrijdingskans in SPSS kleiner dan α? ja > verwerp H0 nee > verwerp H0 niet Is ereen effect?  post-hoc toetsen met meerdere Mann-Whitney/Wilcoxon Rank-Sum. Gebruikzoweinigmogelijk tests en hanteerBonferroni-correctie: α/ aantal tests. Hoofdstuk 7: Variantieanalyse

  47. Kruskal-Wallis toets voor verschil tussen k populaties Demo Kruskal-Wallis: chocoladealsafrodisiacum? OV : 3 niveauschocolade – geen, éénreep, twee repen AV: ordinaleschaal met 3 niveaus Hoofdstuk 7: Variantieanalyse

  48. Kruskal-Wallis toets voor verschil tussen k populaties 6. Effectgrootte • Geen effectgrootte voor K-W test algemeen • Wel effectgrootte van bijhorendenMann-Whitney tests – zie H5 Hoofdstuk 7: Variantieanalyse

  49. Kruskal-Wallis toets voor verschil tussen k populaties 7. Rapportering Een Kruskal-Wallis toets werd uitgevoerd om het effect van het eten van chocolade op de lustgevoelens van dansers na te gaan. Dit effect bleek inderdaad significant, H = 8.71, p = .013. Bijkomend werden de condities zonder chocolade (mean rank = 41), met één reep chocolade (mean rank = 59.91) en twee repen chocolade (mean rank = 53.59) onderling vergeleken door middel van een Wilcoxon rank-sum toets, waarbij een gecorrigeerd significantieniveau van α = .017 werd gehanteerd. Hieruit bleek dat er enkel een significant verschil was tussen de conditie zonder chocolade en de conditie met één reep chocolade (Ws = 954.5, z = -2.976, p = .003, r = -.36). Het verschil tussen de conditie zonder chocolade en de conditie met twee repen chocolade (Ws = 1034.5, z = -1.861, p = .06, r = -.23) noch het verschil tussen de conditie met één reep chocolade en de conditie met twee repen chocolade (Ws = 1105.5, z = -.917, p = .36, r = -.11) waren significant. Hoofdstuk 7: Variantieanalyse

  50. Voorbeeld analyse met k populaties Fetisjisme bij kwartels? (zie Field, 2009) Çetinkaya, Hakan & Domjan, Michael (2006). Sexual fetishism in a quail (Coturnix japonica) model system: Test of reproductive success. Journal of Comparative Psychology, Vol 120(4), Nov 2006, 427-432. Hoofdstuk 7: Variantieanalyse

More Related