1 / 11

UKŁADY LICZENIA SYSTEMY LICZBOWE

UKŁADY LICZENIA SYSTEMY LICZBOWE. SYSTEM LICZBOWY.  jest to zbiór reguł jednolitego zapisu i nazewnictwa liczb. Do zapisywania liczb używa się skończonego zbioru znaków, zwanych cyframi, które można łączyć w dowolnie długie ciągi, otrzymując nieskończoną liczbę kombinacji.

glain
Download Presentation

UKŁADY LICZENIA SYSTEMY LICZBOWE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. UKŁADY LICZENIA SYSTEMY LICZBOWE

  2. SYSTEM LICZBOWY  jest to zbiór reguł jednolitego zapisu i nazewnictwa liczb. Do zapisywania liczb używa się skończonego zbioru znaków, zwanych cyframi, które można łączyć w dowolnie długie ciągi, otrzymując nieskończoną liczbę kombinacji.

  3. podział-rozróżnia się systemy liczbowe pozycyjne i niepozycyjne (addytywne). W systemach liczbowych pozycyjnych liczbę przedstawia się jako ciąg cyfr. Wartość jej jest zależna od położenia cyfry w liczbie. Do systemów pozycyjnych zaliczamy m.in.: dziesiątkowy, dwójkowy, ósemkowy, szesnastkowy. Do addytywnych systemów liczbowych zaliczamy m.in.: rzymski, hieroglificzny, alfabetyczny, gdzie wartość liczby jest sumą wartości jej znaków cyfrowych. 

  4. SYSTEMY POZYCYJNE DZIESIĄTKOWY  zwany też systemem decymalnym lub arabskim to pozycyjny system liczbowy, w którym podstawą pozycji są kolejne potęgi liczby 10. Do zapisu liczb potrzebne jest więc w nim 10 cyfr: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Jak w każdym pozycyjnym systemie liczbowym, liczby zapisuje się tu jako ciąg cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby stanowiącej podstawę systemu. Część całkowitą i ułamkową oddziela separator dziesiętny. Zapis „5045.7”: 5 x 103 +0 x 102 + 4 x 101 + 5 x 100 + 7 x 10-1 = 5000 + 0 + 40 + 5 + 0,7 = 5045,7 Pozycyjny, dziesiętny system liczbowy jest obecnie na świecie podstawowym systemem stosowanym niemal we wszystkich krajach. Oryginalnie pochodzi on z Indii, z których przedostał się do Europy za pośrednictwem Arabów. Od XVI wieku stosowano go obok systemu rzymskiego, w nauce, księgowości oraz tworzącej się właśnie bankowości, gdyż system ten znacznie upraszcza operacje arytmetyczne. W oficjalnych dokumentach jednak nadal zamieniano liczby w zapisie arabskim na system rzymski. W końcu, dzięki praktycznym zaletom system rzymski został prawie zupełnie wyparty na korzyść arabskiego.

  5. DWÓJKOWY SYSTEM LICZBOWY Zwany systemem binarnym lub zero-jedynkowym.  System liczbowy, w którym podstawą jest liczba 2. Do zapisu liczb potrzebne są więc tylko dwie cyfry: 0 i 1. Powszechnie używany w elektronice cyfrowej, gdzie minimalizacja liczby stanów (do dwóch) pozwala na prostą implementację sprzętową odpowiadającą zazwyczaj stanom wyłączony i włączony oraz zminimalizowanie przekłamań danych. Co za tym idzie, przyjął się też w informatyce.Jakw każdym pozycyjnym systemie liczbowym, liczby zapisuje się tu jako ciągi cyfr, z których każda jest mnożnikiem kolejnej potęgi podstawy systemu. Indeksy: 10102 = 1010 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20 = 8 + 2 = 10 Systemu używał już John Napier ,(szkocki matematyk, odkrywca logarytmów),w XVI wieku, przy czym 0 i 1 zapisywał jako a i b.

  6. Z SYSTEMU DZIESIĘTNEGO NA DWÓJKOWY Cyfra 1 podobnie jak w systemie dziesiętnym ma wartość zależną od swojej pozycji - na końcu oznacza 1, na drugiej pozycji od końca 2, na trzeciej 4, na czwartej 8, itd. Ponieważ   0 x 2n = 0 oraz1 x 2n = 2naby obliczyć wartość liczby zapisanej dwójkowo, wystarczy zsumować potęgi dwójki odpowiadające cyfrom 1 w zapisie. 3010 = ( 3 x 10 + 0 x 1)10 = (11 x 1010 + 0 x 1)2 = 111102 Rozbicie na sumę potęg liczby 2: 3010 = (16 + 8 + 4 + 2)10 = (10000 + 1000 + 100 + 10)2 = 111102 Bądź też przez wyznaczanie reszt w wyniku kolejnych dzieleń liczby przez 2: 30 ÷ 2 = 15 reszty 0 - 0 to cyfra jedności, 15 ÷ 2 = 7 reszty 1 - 1 to cyfra drugiego rzędu, 7 ÷ 2 = 3 reszty 1 3 ÷ 2 = 1 reszty 1 1 ÷ 2 = 0 reszty 1 Aby obliczyć wartość dwójkową liczby przepisujemy od końca cyfry reszty.

  7. OBLICZENIA Działania na liczbach w systemie dwójkowym są odpowiednikiem działań w systemie dziesiętnym, i opierają się na elementarnych działaniach: 1+ 0 = 1 1 + 1 = 10 1* 0 = 0 1 * 1 = 1 10 - 1 = 1

  8. ÓSEMKOWY SYSTEM LICZBOWY pozycyjny system liczbowy o podstawie 8. System ósemkowy jest czasem nazywany oktalnym od słowa octal. Do zapisu liczb używa się w nim ośmiu cyfr, od 0 do7. Jak w każdym pozycyjnym systemie liczbowym, liczby zapisuje się tu jako ciągi cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby będącej podstawą systemu. Indeksy: 1448 = 10010 1 x 82 + 4 x 81 + 4 x 80 = 64 + 32 + 4 = 100 100/8 = 12 i 4 reszty = 4 12/8 = 1 i 4 reszty = 4 1/8 = 0 i 1 reszty = 1 Teraz czytamy od dołu: 144 w systemie oktalnym to 100 w systemie dziesiętnym.

  9. DWUNASTKOWY SYSTEM LICZBOWY  Pozycyjny system liczbowy, w którym podstawą pozycji są kolejne potęgi liczby 12. Do zapisu liczb potrzebne jest dwanaście cyfr. Poza cyframi dziesiętnymi od 0 do 9 używa się pierwszych dwóch liter alfabetu łacińskiego: A i B. Liczby zapisuje się tu jako ciągi cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby stanowiącej podstawę systemu. Indeksy: 6B412 = 100010 6 x 122 + 11 x 121 + 4 x 120 = 864 + 132 + 4 = 1000 System dwunastkowy używany był na Bliskim WschodziewBabilonii, używano go równolegle z systemem dziesiętnym. W niewielkim zakresie systemu dwunastkowego używano także w starożytnym Rzymie, gdzie starożytna jednostka monetarna As składała się z 12 uncji. Również średniowieczny system monetarny w Europie opierał się częściowo na systemie dwunastkowym: pieniądze liczono m.in. w solidach, które zawierały po 12 denarów. (pozostałość tego systemu monetarnego przetrwała do 2. połowy XX w. w krajach powiązanych kulturowo z Wielką Brytanią, a w samej Wielkiej Brytanii aż do roku 1971, gdzie do tej daty szyling dzielił się na 12 pensów).

  10. SZESNASTKOWY SYSTEM LICZBOWY Pozycyjny system liczbowy, w którym podstawą jest liczba 16. Do zapisu liczb w tym systemie potrzebne jest szesnaście znaków. W najpowszechniejszym standardzie poza cyframi dziesiętnymi od 0 do 9 używa się pierwszych sześciu liter alfabetu łacińskiego: A, B, C, D, E, F (wielkich lub małych). Cyfry 0-9 mają te same wartości co w systemie dziesiętnym, natomiast litery odpowiadają następującym wartościom: A = 10, B = 11, C = 12, D = 13, E = 14 oraz F = 15. Indeksy: 3E816 = 100010 3 x 162 + 14 x 161 + 8 x 160 = 768 + 224 + 8 = 1000 Wiele kalkulatorów naukowych ma dostępny dla użytkownika system szesnastkowy. Umożliwiają one zwykłe operacje na liczbach w tej postaci oraz ich konwersję do innych systemów pozycyjnych. Wiele parametrów układów elektronicznych  podaje się w systemie szesnastkowym. Szesnastkowy system liczbowy stosuje się w informatyce, w przypadku programowania niskopoziomowego, sterowania sprzętem komputerowym, wyboru adresów itp.

  11. KONIEC DZIĘKUJE ZA UWAGE Agnieszka Malinowska Id

More Related