90 likes | 174 Views
Angle Pairs. Brian Ericson CEP 810 11/16/09. Corresponding Angles. When lines are NOT II. When lines are II. Finding Corresponding Angles. Given : Line AB II Line CD, m ∠ ɑ=(5x+50) °, m ∠ β =(10x) ° Find : m ∠ ɑ and m ∠ β 5x+50=10x Subtract 5x 50 = 5x Divide by 5 X = 10
E N D
Angle Pairs Brian Ericson CEP 810 11/16/09
Corresponding Angles When lines are NOT II When lines are II
Finding Corresponding Angles Given: Line AB II Line CD, m ∠ ɑ=(5x+50) °, m ∠β =(10x) ° Find: m ∠ ɑ and m ∠β 5x+50=10x Subtract 5x 50 = 5x Divide by 5 X = 10 m ∠ ɑ=(5(10)+50) ° m ∠ ɑ=100 ° m ∠β =(10(10)) ° m ∠β =100 °
Alternate Interior Angles When lines are NOT II When lines are II
Finding Alternate Interior Angles Given: Line AB II Line CD, m ∠ ɑ=(4x) °, m ∠β =(2x+30) ° Find: m ∠ ɑ and m ∠β 2x+30=4x Subtract 2x 30 = 2x Divide by 2 15 = x m ∠ ɑ=(4(15)) ° m ∠ ɑ=60 ° m ∠β =(2(15)+30) ° m ∠β =60 °
Alternate Exterior Angles When lines are NOT II When lines are II
Finding Alternate Exterior Angles Given: Line AB II Line CD, m ∠ ɑ=(x+60) °, m ∠β =(3x) ° Find: m ∠ ɑ and m ∠β x+60=3x Subtract x 60 = 2x Divide by 2 30 = x m ∠ ɑ=((30)+60) ° m ∠ ɑ=90 ° m ∠β =(3(30)) ° m ∠β =90 °
Consecutive Interior Angles When lines are NOT II When lines are II
Finding Consecutive Interior Angles Given: Line AB II Line CD, m ∠ ɑ=(40x+20) °, m ∠β =(30x+20) ° Find: m ∠ ɑ and m ∠β 40x+20+30x+20=180 Combine like terms 70x+40 =180 Subtract 40 70x =140 Divide by 70 X =2 m ∠ ɑ=(40(2)+20) ° m ∠ ɑ=100 ° m ∠β =(30(2)+20) ° m ∠β =80 °